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Abstract. Medical imaging plays a pivotal role in diagnosing and monitoring various diseases,
and accurate polyp segmentation is essential for early disease detection and treatment planning.
However, the scarcity of well-annotated medical imaging data hampers the development of
effective segmentation models. Semi-supervised learning stands out as a critical approach to
address this issue. Traditional semi-supervised medical image segmentation models leverage
strong-weak perturbation consistency losses to provide supervision signals. While these losses
are effective in promoting consistency, they often exhibit a drawback, that is the dominance of
strong perturbations during early training stages. This dominance hinders the model's ability to
extract meaningful features, ultimately impacting its overall performance. In response to these
challenges, we introduce a novel training method applied to polyp segmentation. We employ a
progressive approach, gradually introducing strong-weak perturbation supervision signals. This
gradual guidance empowers the model to focus on learning relevant features from the
beginning of training, mitigating the issue of early dominance and enhancing its performance.
Our method is evaluated on two widely-used polyp segmentation datasets and surpasses state-
of-the-art methods, demonstrating substantial improvements in segmentation accuracy.
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1. Introduction

Medical imaging assumes a crucial role in diagnosing and managing a wide array of medical
conditions, equipping healthcare providers with the knowledge needed for well-informed decision-
making [1][2]. Within the realm of medical imaging, accurate polyp segmentation is of paramount
importance as it aids in the early detection of colorectal diseases and facilitates treatment planning [3].
However, the development of robust polyp segmentation models is challenged by the scarcity of
meticulously annotated medical imaging data. To address this data scarcity, semi-supervised learning
has emerged as a promising avenue [4]. This approach leverages both labeled and unlabeled data,
effectively expanding the available dataset for training segmentation models [5].
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Figure 1. The core concept of the FixMatch algorithm.
Nevertheless, traditional semi-supervised medical image segmentation models often confront a
significant issue. Take FixMatch [6] in Figure 1 as an example, one branch receives a strong
perturbation while the other receives a weak perturbation. Intuitively, the model is expected to provide
more accurate predictions for the branch subjected to weaker perturbations. Consequently, these
predictions are employed to generate pseudo-labels, striking a balance between ensuring pseudo-label
accuracy and leveraging the benefits of stronger perturbations for enhanced model performance, these
models typically rely on strong-weak perturbation consistency losses to provide supervision signals.
Regrettably, during the initial training stages, strong perturbations tend to dominate the learning
process, posing challenges for the model to effectively capture salient features and impeding its
overall performance [7].
In this paper, we introduce a novel training approach, applied to polyp segmentation, addressing the
aforementioned issue inspired by DART [8]. Our approach involves the progressive provision of
strong-weak perturbation supervision signals, breaking the training process into distinct stages. In the
initial stage, only weak perturbation supervision signals are provided. Subsequently, in the second
stage, a limited number of strong perturbation supervision signals are introduced, followed by an
increase in perturbation signals in the third stage. This design enables the model to better utilize the
supervision signals obtained from pseudo-labeling while avoiding the excessive influence of strong
perturbations, ultimately enhancing the learning of meaningful features.
In Summary, this paper contributes to the field with three primary innovations. Firstly, we discuss the
limitations of classic strong-weak perturbation supervision signals. Building upon this insight, we
introduce a novel semi-supervised training method that facilitates early feature learning while enabling
effective utilization of strong perturbation supervision signals in the later stages. Finally, our approach
is evaluated on two widely used polyp segmentation datasets, demonstrating substantial performance
improvements that surpass the current state-of-the-art methods.

2. Method
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Figure 2. Model training overview with progressive perturbations.

Figure 2 illustrates the structure and training process of our model. The data flow begins with basic
data augmentation, termed as "weakly perturbations", applied to all data. Subsequently, labeled data
directly undergo training, while unlabeled data undergo augmentations with three distinct random
parameter settings, resulting in moderate or strong perturbations. The predictions of data subjected to
moderate perturbations are treated as pseudo-labels, guiding the training of data subjected to strong
perturbations. During this process, all models share parameters to optimize memory efficiency and
maintain computational efficiency comparable to conventional methods.

2.1. Perturbation Strategies

To introduce perturbations, we employ three techniques. Firstly, the original data undergo weak
perturbations through random cropping and flipping. Subsequently, moderate perturbations are
introduced through the addition of random Gaussian noise, followed by the application of strong
perturbations by random alterations in color saturation and contrast. The effects of these perturbations
are demonstrated in Figure 3.

(a) image (b) weakly perturbed (c¢) moderately perturbed (d) strongly perturbed

Figure 3. Perturbation effects on data augmentation.



2.2. Loss Computation

Our loss computation consists of two integral components: the supervised loss and the unsupervised
loss, each serving a distinct purpose in our semi-supervised learning framework.

The supervised loss, denoted as I is responsible for quantifying the dissimilarity between the model's
predictions (p;) for labeled data and their corresponding ground-truth labels (pp, (¥ |Xp) ). In this
equation:

1
L= 5o Yo" CE(piy pm (v1%b)) (1)

Here, CE represents the cross-entropy loss, and Batch signifies the number of samples within a batch.
On the other hand, the unsupervised loss, denoted as 1, is designed to evaluate the model's predictions
for unlabeled data in relation to their pseudo-labels. These pseudo-labels are derived from the

predictions of data subjected to moderate perturbations. The equation for 1, is as follows:

— P [max(py (ylup) = TICE(argmax(pp (y1us)), P (ylup)) )

In this equation, w represents the ratio of unlabeled data, and t is a threshold for pseudo-label
assignment. 1, calculates the cross-entropy loss based on the most probable class prediction (argmax)
for the unlabeled data and their respective pseudo-labels.
The final loss is obtained as the sum of I and 1, with a scaling factor consistency_weight applied to 1,
to balance the contributions of both components:

Loss = I + consistency_weight * 1, 3)
This hybrid loss function serves as the foundation of our semi-supervised learning approach, enabling
model to effectively leverage both labeled and unlabeled data for improved model performance.

I, =

3. Experiments

We conducted a rigorous evaluation on two widely-used colonic polyp segmentation datasets, Kavsir
[9] and CVC-ClinicDB [10]. We maintained consistency with the data preprocessing and dataset
partitioning standards defined by the baseline models specific to each dataset. This alignment ensured
a fair comparison with recent state-of-the-art models and established a robust foundation for our
assessments. Our primary evaluation metric was the mean Intersection over Union (mloU), which
calculates the average IOU across all classes. We experimented with varying annotation data ratios of
10% and 20%.

Table 1. Performance on Kavsir and CVC-CLinicDB Datasets. Bold entries in the table indicate the
best-performing results for each metric.

Dataset Kavsir CVC-CLinicDB

Labeled Ratio 10% 20% 10% 20%
U-Net [11] 0.3560 0.4354 0.5780 0.6874
PSPNet [11] 0.3259 0.4158 0.5600 0.6210
LinkNet [11] 0.3897 0.4698 0.4950 0.5614
MT [12] 0.5741 0.6698 0.7125 0.7695
GAN [5] 0.5632 0.6599 0.68994 0.7595
CCT [4] 0.6058 0.6629 0.6925 0.75201
FixMatch [6] 0.6647 0.6816 0.6955 0.7483
SemiSegPolyp [2] 0.6523 0.7058 0.7045 0.7799
Ours 0.7074 0.7114 0.7452 0.7998

The results, as depicted in the Table 1, underscore the impressive performance of our model across
both datasets and different annotation data ratios. Furthermore, the consistently higher mloU values
achieved by our proposed method underscore its effectiveness in addressing the complexities of
colonic polyp segmentation tasks. Across both the Kavsir and CVC-ClinicDB datasets, at both 10%
and 20% labeled ratios, our approach demonstrated a notable improvement in capturing the intricate
details of colonic polyps compared to established baseline models. The superior performance of our



method is particularly evident when juxtaposed with various state-of-the-art techniques, such as U-Net,
PSPNet, LinkNet, MT, GAN, CCT, FixMatch, and SemiSegPolyp. Notably, at a labeled ratio of 20%,
our method achieved an impressive mloU of 0.7998 on the CVC-ClinicDB dataset, outperforming all
other models. This signifies the robustness of our approach in scenarios where a higher percentage of
labeled data is available. The observed trend of our method consistently outshining its counterparts
suggests its adaptability to different annotation data ratios and datasets. This adaptability is crucial in
real-world scenarios where obtaining a large labeled dataset might be challenging. The ability of our
method to maintain high segmentation accuracy even with a limited amount of labeled data highlights
its potential for practical deployment in medical image analysis, specifically in colonic polyp
segmentation applications. Overall, these results affirm the promising capabilities of our proposed
approach and position it as a compelling candidate for advancing the state of the art in colonic polyp

segmentation.
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Figure 4. Enhanced polyp boundary segmentation compared to classic methods.

4. Conclusions

In this paper, we conducted a comprehensive analysis of traditional semi-supervised medical image
segmentation models, revealing a critical limitation prevalent during early training stages. To address
this challenge, we introduced a novel progressive semi-supervised training approach. By gradually
providing supervision signals with varying perturbation strengths, our method empowers the model to
more efficiently capture valuable features during early training while maintaining the capacity to
exploit the benefits of stronger perturbations in the later stages. Our experiments on two widely-
adopted polyp segmentation datasets demonstrated the superiority of our approach, surpassing the
state-of-the-art results. Future directions encompass extending the application of our approach to
diverse medical image segmentation tasks and exploring its potential in other domains requiring semi-
supervised learning techniques.
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