
IEEE TRANSACTIONS AND JOURNALS TEMPLATE, VOL. XX, NO. XX, XXXX 2024 1
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Abstract— Semi-supervised learning has emerged as a
promising approach to leverage both labeled and unla-
beled data due to the limited data annotations in medical
image segmentation. Existing semi-supervised methods
predominantly focus on high confidence pseudo labels,
often neglecting the vast number of low confidence pseudo
labels and the potential for improving pseudo labels quality.
This paper introduces a novel approach that systematically
leverages low confidence pseudo labels to address the
limitations of conventional semi-supervised techniques. At
the image level, we employ a superpixel algorithm and in-
formation entropy voting to ensure spatial coherence, while
at the feature level, we utilize triplet loss to distinguish
between similar and dissimilar regions. Furthermore, to
enhance the overall quality of pseudo labels, we integrate
a mutual correction framework, which supports iterative
refinement and progressively improves segmentation out-
comes. The proposed method achieves state-of-the-art re-
sults on two public datasets with different labeled data ratio
and shows improvements on all baselines, demonstrating
its effectiveness in improving segmentation performance
and its potential applicability to a wide range of medical
imaging tasks. Code is available at https://github.com/
yeshunlong/PLBOpt.

Index Terms— Medical image segmentation, semi-
supervised learning, pseudo label, superpixel, triplet loss,
mutual correction.

I. INTRODUCTION

Medical image segmentation is crucial for various clinical
applications [1]–[3], but acquiring labeled data for training
deep learning models is challenging due to the scarcity of
annotated medical images [4], [5]. This scarcity arises from
the significant time and expertise required for precise annota-
tion, often necessitating the involvement of highly specialized
radiologists or pathologists. Consequently, this highlights the
importance of semi-supervised learning in this field [6]–[8], as
it enables the utilization of large amounts of unlabeled data to
enhance model performance and accuracy, thereby alleviating
the dependency on extensive labeled datasets [9]–[12].

Traditional semi-supervised medical image segmentation
models utilize pseudo labels to leverage unlabeled data [13],
[14]. However, in practice, these models often directly use
predictions with the highest confidence [15], [16], neglecting
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Fig. 1. Visualization of pseudo labels with different confidence levels.
(a) Image label mask. (b) Low confidence pseudo labelsmask. (c) High
confidence pseudo labels mask.

the distribution of pseudo labels and resulting in suboptimal
utilization. As depicted in Fig. 1, when pseudo labels are
categorized based on confidence levels, we observe that low
confidence pseudo labels delineate boundaries to a certain
extent, indicating their significance in segmentation tasks.
These low confidence pseudo labels often contain valuable
boundary information that can improve the model’s under-
standing of complex anatomical structures. Therefore, these
low confidence pseudo labels should be prioritized for optimal
utilization, which forms the core motivation of our approach.
By refining these labels and incorporating them into the train-
ing process, we can further increase the quantity and quality of
utilized pseudo labels, thereby enhancing the model’s accuracy
and robustness in medical image segmentation.
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Fig. 2. Visualization of pseudo labels refinement results. (Organ: liver)
(a-c) Original image, pseudo label, and refined pseudo labels (slice 1).
(d-f) Original image, pseudo label, and refined pseudo label. (slice 2) (g)
Correct pseudo label pixel ratio comparison. Yellow lines in (a-f) indicate
superpixel boundary.
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In existing efforts to enhance the utilization of pseudo
labels, most approaches focus on optimizing their distribution
by predicting confidence levels [17], [18] or measuring uncer-
tainty [19], [20]. However, these methods primarily operate
only at the feature level and, while they do increase the
number of pseudo labels used, they do not fundamentally
improve the quality of these labels. Our approach is centered
on enhancing both the quantity and quality of pseudo labels,
aiming to provide a more comprehensive solution. As illus-
trated in Fig. 2, our method significantly improves the ability
to capture anatomical structures and variations, particularly
in complex regions like the liver. This refinement process
not only reduces noise and inaccuracies but also enhances
the model’s generalization across different slices, leading to
improved segmentation accuracy and reliability in clinical
applications.

In this study, we introduce a novel training approach for
semi-supervised medical image segmentation that aims to both
increase the quantity and enhance the quality of pseudo labels.
Specifically, our method is designed to systematically refine
pseudo labels, thereby addressing the limitations of traditional
approaches that primarily operate at the feature level. Our
approach consists of three core components: superpixel refine-
ment combined with information entropy voting at the image
level, triplet loss applied at the feature level, and a mutual
correction framework that iteratively improves pseudo labels.

From the perspective of improving utilization, we introduce
a superpixel refinement process that ensures spatial coher-
ence within the image. The superpixel algorithm segments
the image into smaller, homogeneous regions, which are
then evaluated using information entropy voting. This voting
mechanism quantifies the uncertainty within each superpixel,
allowing us to adjust the boundaries of the pseudo labels
based on the entropy values. If the entropy within a super-
pixel exceeds a predefined threshold, the boundary is either
contracted or expanded depending on the relative entropy of
adjacent regions. This approach not only increases the number
of usable pseudo labels but also ensures that these labels are
more spatially consistent with the underlying image structures.

At the feature level, we employ triplet loss to further
refine the pseudo labels by enhancing the model’s ability
to distinguish between similar and dissimilar regions. We
hierarchically divide the pseudo labels into multiple confidence
levels and use a feature extractor to compute the cosine sim-
ilarity between boundary and internal pixels. By identifying
the most similar boundary pixels (hard positives) and the most
dissimilar internal pixels (hard negatives), we can effectively
train the model to focus on boundary details. The triplet loss
function penalizes the model if the feature representation of
a boundary pixel is more similar to an internal pixel than
to another boundary pixel, thereby promoting more accurate
segmentation.

From the perspective of improving quality, we propose a
mutual correction framework that systematically corrects er-
rors in pseudo labels by leveraging the discrepancies between
two identical subnetworks. These subnetworks are trained in
parallel, and their outputs are compared to identify regions
where the pseudo labels exhibit significant confidence dif-

ferences. If one subnetwork assigns a high confidence to a
region where the other subnetwork assigns low confidence,
this discrepancy triggers a reevaluation of the pseudo label.
Through this iterative process, the mutual correction frame-
work progressively refines the pseudo labels, resulting in
higher accuracy and consistency in the final segmentation
results.

This paper introduces three main innovations:
• Firstly, we improve the quantity of usable pseudo labels

by incorporating both image level (superpixel refinement
and information entropy voting) and feature level (triplet
loss) techniques, thereby enabling a more effective uti-
lization of pseudo labels.

• Secondly, we enhance the quality of pseudo labels
through the introduction of a mutual correction frame-
work. This framework uses dual subnetworks to itera-
tively refine predictions, leading to more accurate pseudo
labels and overall segmentation quality.

• Lastly, the proposed approach achieves state-of-the-art
(SOTA) results on two publicly available datasets for
multi-organ segmentation with varying labeled data ra-
tios, confirming the method’s efficacy and reliability.
Moreover, the improvements on all baselines further
demonstrate the versatility of our approach.

II. RELATED WORK

A. Semi-supervised medical image segmentation

Semi-supervised medical image segmentation is a rapidly
advancing field, driven by the need to utilize both labeled and
unlabeled data effectively. This approach is particularly vital
due to the scarcity of annotated medical images, which poses a
significant challenge for training deep learning models [5]. The
utilization of pseudo labels has become an essential strategy
to mitigate this challenge, as it allows models to leverage the
vast amount of unlabeled data available [9].

Several methods have been proposed to effectively utilize
pseudo labels in different network architectures and scenarios.
For instance, consistency learning under transformations has
been explored to ensure that the model predictions remain
stable under various image transformations, thereby enhanc-
ing the robustness of pseudo labels [7]. Another innovative
approach involves cross teaching between convolutional neu-
ral networks (CNNs) and transformers, which leverages the
complementary strengths of these architectures to improve seg-
mentation performance [9]. Dual-task consistency is another
technique employed to utilize pseudo labels effectively. This
method ensures that the model maintains consistent predictions
across different tasks, which in turn enhances the reliability
of the pseudo labels [21]. Attention-based mechanisms have
also been integrated into semi-supervised frameworks to focus
on critical regions of the images [10]. Multi-task learning
approaches have shown promise in leveraging pseudo labels by
simultaneously optimizing for multiple related tasks. This not
only improves segmentation accuracy but also enhances the
model’s ability to generalize to different medical imaging sce-
narios [11]. Additionally, causality-inspired semi-supervised
learning has been proposed to incorporate causal inference
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principles into the segmentation process, further refining the
utilization of pseudo labels [8]. Furthermore, few-shot learning
techniques have been adapted to the semi-supervised paradigm
to handle scenarios with extremely limited labeled data. These
methods aim to learn effective segmentation models from very
few examples by making efficient use of pseudo labels [3].

B. Pseudo labels utilization and optimization
In the realm of semi-supervised medical image segmenta-

tion, the utilization and optimization of pseudo labels play a
pivotal role in bridging the gap between labeled and unlabeled
data. The current methodologies can be broadly classified into
two main approaches: leveraging a larger number of pseudo
labels and enhancing the quality of these labels.

To utilize more pseudo labels, various strategies have been
developed. One common approach is to generate pseudo labels
for the unlabeled data based on the model’s predictions and
then use these labels to retrain the model iteratively. This
method is particularly effective in expanding the training
dataset and improving the model’s robustness. For instance,
curriculum pseudo labeling, which introduces pseudo labels
gradually according to their confidence levels, ensures a
smoother learning process and better model performance [22],
[23]. Another notable technique is the use of federated learn-
ing frameworks that incorporate pseudo labels denoising to
enhance segmentation performance across distributed datasets
without compromising data privacy [24], [25].

On the other hand, improving the quality of pseudo la-
bels is crucial for achieving higher accuracy in segmenta-
tion tasks. Quality enhancement methods often involve refin-
ing the pseudo labels by addressing uncertainty and noise.
Uncertainty-aware methods generate pseudo labels that ac-
count for prediction confidence, thereby filtering out unreliable
labels and retaining high quality annotations for model train-
ing [20], [26]. Similarly, approaches like pseudo labeling with
confirmation bias mitigation ensure that the pseudo labels are
not only generated but also validated for consistency, reducing
the risk of propagating errors through the training process [27].

Despite these advancements, existing methods face two
significant challenges. Firstly, most approaches tend to focus
on either increasing the number of pseudo labels or enhancing
their quality, rarely addressing both aspects simultaneously.
This single-faceted focus can limit the overall effectiveness of
the semi-supervised learning process. Secondly, the majority
of current methods concentrate at feature level optimization of
pseudo labels, which might not fully capture the complexities
and nuances of data at image level. For example, methods like
prototype-based pseudo labeling and contrastive learning are
primarily feature-driven and may overlook detailed boundary
information crucial for precise segmentation.

III. METHOD

In this section, we present our proposed method for pseudo
labels optimization in semi-supervised medical image seg-
mentation. The method consists of three main components:
pseudo labels refinement, triplet loss computation, and mutual
correction framework. These components work together to

enhance the utilization and quality of pseudo labels, thus
improve the model’s segmentation performance.

A. Pseudo labels refinement

VS Entropy

Super Pixel DividePseudo Label Refined 
Pseudo Label 

Refine

Fig. 3. Illustration of pseudo labels refinement process.

To formally describe the semi-supervised medical image
segmentation problem, we denote the annotated dataset as
Dl = {(xi,yi)}Nl

i=1, where xi is the input image and yi is
its corresponding ground truth label. The unannotated dataset
is denoted as Du = {xi}Nu

i=1, and the pseudo labels generated
for Du are denoted as ŷi.

As illustrated in Fig. 3, to optimize pseudo labels, we first
segment the pseudo labels into superpixels using the SLIC [28]
algorithm, yielding S = {Si}Ns

i=1, where Si represents the ith
superpixel. For each superpixel Si, we calculate the intersec-
tion and complement with the pseudo labels mask, denoted as
Mint

i = Si ∩ ŷ and Mcomp
i = Si \ ŷ, respectively. We then

compute the entropy of each region:

H(Mint
i ) = −

C∑
c=1

p(c|Mint
i ) log p(c|Mint

i ) (1)

H(Mcomp
i ) = −

C∑
c=1

p(c|Mcomp
i ) log p(c|Mcomp

i ) (2)

where p(c|Mint
i ) and p(c|Mcomp

i ) are the normalized class
probabilities within Mint

i and Mcomp
i , respectively.

To decide whether to expand or contract the boundary of
the pseudo label, we introduce a threshold parameter τ . If
H(Mint

i ) > τ and H(Mint
i ) > H(Mcomp

i ), it indicates that
the current boundary of the pseudo labels is uncertain and
should be contracted. Conversely, if H(Mcomp

i ) > τ and
H(Mcomp

i ) > H(Mint
i ), the boundary is expanded. More

expriments results on the influence of superpixel segments
number and algorithm can be found in section IV.

B. Triplet loss
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Fig. 4. Illustration of triplet loss computation process.

As shown in Fig. 4, assume the pseudo labels as ŷ as-
sociated confidence levels as c(ŷ), we hierarchically divide
these pseudo labels into k (k = 3 in our method) confidence
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levels {ŷ1, ŷ2, . . . , ŷk} such that each subset ŷi satisfies the
condition:

∀ŷi, ŷj ∈ {ŷ1, ŷ2, . . . , ŷk} and i < j, if c(ŷi) < c(ŷj) (3)

Each level pseudo labels must satisfy the following con-
straints: within the same domain, features of boundary pixels
should be more similar to each other, while features of
boundary pixels and internal pixels should be less similar. This
ensures that the model learns to distinguish boundary details
effectively.

Assume information within the same domain is extracted
by a feature extractor f(·) for each pixel x. The similarity
between two feature vectors f(xi) and f(xj) is measured
using the cosine similarity:

sim(f(xi), f(xj)) =
f(xi) · f(xj)

∥f(xi)∥∥f(xj)∥
(4)

To query the most similar and most dissimilar feature
vectors for boundary refinement, we define:

• Anchor xi,a: A boundary pixel.
• Hard positive xi,p: The boundary pixel with the highest

cosine similarity within the same domain.
• Hard negative xi,n: The internal pixel with the lowest

cosine similarity within the same domain.
Thus, the hard positive and hard negative can be identified

as follows:

xi,p = arg max
xj∈boundary

sim(f(xi,a), f(xj)) (5)

xi,n = arg min
xj∈internal

sim(f(xi,a), f(xj)) (6)

During this process, positive and negative information ex-
tracted by the feature extractor f(·) is stored in two memory
bank Mp and Mn, respectively. The memory bank holds
feature vectors for efficient comparison and retrieval during
the training process. It is updated using a queue mechanism
with limited capacity C. When a new feature vector f(x) is
added, the oldest entry in the memory bank is removed if the
capacity is exceeded. The update process can be described as:

M←

{
M∪ {f(x)} if |M| < C

(M\ {oldest entry}) ∪ {f(x)} if |M| = C
(7)

Then, the triplet loss can be defined as follows:

Ltriplet =

N∑
i=1

[
∥f(xi,a)− f(xi,p)∥2

− ∥f(xi,a)− f(xi,n)∥2 + α

]
+

(8)

where xi,a is an anchor boundary pixel, xi,p is the hard
positive boundary pixel, xi,n is the hard negative internal pixel,
f(·) is the feature extractor, [z]+ = max(z, 0), and α is the
margin hyperparameter.

This hierarchical pseudo labels division and triplet loss
framework collectively enhance the model’s ability to accu-
rately capture and refine boundary details in semi-supervised
medical image segmentation.

C. Mutual correction framework

Refine
Subnet A

Subnet B

+

Ltriplet
Unlabeled

Data

LMC

Labeled & Unlabeled
Data

Unlabeled
Prediction

Labeled
Prediction

Lsup

Low Confidence

Pair
xor

High Confidence

Ground
Truth

Fig. 5. Overview of the mutual correction framework with pseudo labels
refinement and triplet loss computation.

Inspired by MCF [29], we employ two structurally identical
subnetworks, Subnet A and Subnet B, to address potential
errors in pseudo labeling, as depicted in Fig. 5. The principle
is that if the confidence levels of pseudo labels for the same
input are significantly different between the two networks, it
indicates potential errors in the corresponding region predic-
tions, prompting a reevaluation.

Let p
(A)
i and p

(B)
i represent the confidence scores for

the pseudo labels generated by Subnet A and Subnet B,
respectively. We denote high confidence by H and low con-
fidence by L. For each pixel location j, if both networks
show high confidence (H,H) or low confidence (L,L), it
suggests either consistent certainty or uncertainty, providing
limited additional information. However, a high confidence in
one network and low confidence in the other (H,L or L,H)
indicates a discrepancy that warrants further scrutiny.

The consistency requirement can be mathematically ex-
pressed as:

C(p
(A)
i (j),p

(B)
i (j)) =


1 if (p(A)

i (j) > τ and p
(B)
i (j) ≤ τ)

or (p(A)
i (j) ≤ τ and p

(B)
i (j) > τ)

0 otherwise
(9)

where τ is the confidence threshold. The mutual correction
loss LMC is calculated as:

LMC =
1

N

N∑
i=1

M∑
j=1

C(p
(A)
i (j),p

(B)
i (j))

∥∥∥ŷ(A)
i (j)− ŷ

(B)
i (j)

∥∥∥2
(10)

where ŷ
(A)
i (j) and ŷ

(B)
i (j) are the pseudo labels generated

by Subnet A and Subnet B at location j, respectively. The
function C(p

(A)
i (j),p

(B)
i (j)) identifies locations with signif-

icant confidence discrepancies, emphasizing the correction of
these regions. The mutual correction framework aims to en-
hance the robustness and accuracy of segmentation predictions
by leveraging the disagreement between the two subnetworks
to identify and rectify potential errors.
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D. Overview of the proposed method

The overall loss function consists of three components: the
triplet loss Ltriplet, the mutual correction loss LMC , and the
supervised loss Lsup. The coefficients for the triplet loss and
mutual correction loss are updated using an exponential ramp-
up strategy [30] to balance their contributions effectively. The
total loss is formulated as:

Ltotal = λtriplet · Ltriplet + λMC · LMC + Lsup (11)

The training process is summarized in Algorithm 1, where
the subnetworks Subnet A and Subnet B are iteratively updated
to refine pseudo labels and enhance the model’s segmentation
performance.

Algorithm 1 Pseudocode for the entire training process.

Input: Annotated dataset Dl = {(xi,yi)}Nl
i=1, unannotated

dataset Du = {xi}Nu
i=1, hyperparameters λtriplet and λMC

Output: Trained subnetworks Subnet A and Subnet B
1: Initialize Subnet A and Subnet B with random weights,

positive memory bank Mp, negative memory bank Mn

and featrue extractor f(·)
2: repeat
3: Sample a mini-batch from Dl

y(B) = Subnet B(xl)
4: Compute supervised loss Lsup

Lsup = SupervisedLoss(y(B),yl)
5: Sample a mini-batch from Du

ŷ(A) = Subnet A(xu)
ŷ(B) = Subnet B(xu)

6: Segment pseudo labels into superpixels
S = SLIC(xu)

7: Refine pseudo labels using entropy comparison
for each pseudo label ŷi in ŷ(A) and ŷ(B)

ŷi = PseudoLabelRefinement(ŷi,S)
end for

8: Save refined pseudo labels to memory bank
xi,a = f (ŷ(A)) ∪ f (ŷ(B))
MemorybankUpdate(Mp, xi,a)
MemorybankUpdate(Mn, xi,a)

9: Construct hard positive and hard negative triplets
xi,p = CosineSimilarityQuery(Mp, xi,a)
xi,n = CosineDissimilarityQuery(Mn, xi,a)

10: Compute triplet loss Ltri

Ltriplet = Tri(ŷ(A), xi,p, xi,n) + Tri(ŷ(B), xi,p, xi,n)
11: Compute mutual correction loss LMC

LMC = MutualCorrectionLoss(ŷ(A), ŷ(B))
12: Combine all losses to form the total loss

Ltotal = λtriplet · Ltriplet + λMC · LMC + Lsup

13: Backpropagate the total loss and update Subnet A and
Subnet B

14: until convergence

IV. EXPRIMENTS

In this section, we present the experimental setup, including
the datasets used, evaluation metrics. We then provide a

comprehensive analysis of the results obtained and compare
our method with SOTA models on two publicly available
datasets.

A. Dataset and evaluation metrics
We conduct comprehensive experiments to evaluate the

performance of our proposed approach on two widely-used
and publicly available human organ segmentation datasets:
Synapse [31] and AMOS [32].

The Synapse dataset encompasses 13 foreground classes,
including spleen (Sp), right kidney (RK), left kidney (LK),
gallbladder (Ga), esophagus (Es), liver (Li), stomach (St),
aorta (Ao), inferior vena cava (IVC), portal & splenic veins
(PSV), pancreas (Pa), right adrenal gland (RAG), and left
adrenal gland (LAG). It consists of 30 axial contrast-enhanced
abdominal CT scans, distributed randomly as 20, 4, and 6
scans for training, validation, and testing, respectively. The
AMOS dataset comprises 360 scans, with a split of 216, 24,
and 120 scans for training, validation, and testing, respectively,
and includes three new classes: duodenum (Du), bladder (Bl),
and prostate/uterus (P/U). We adopt DHC [33] as our baseline
and compare our results with SOTA models reported in recent
years using different labeled data ratio. In addtion, we employ
three-fold cross-validation to evaluate our method on Synapse
dataset considering the limited number of labeled data.

We evaluate the segmentation performance using the below
metrics:

• The Dice coefficient is defined as

Dice =
2× |X ∩ Y |
|X|+ |Y |

,

where X represents the predicted segmentation mask, Y
is the ground truth mask, and ∩ denotes the intersection
of the two sets. A higher Dice coefficient indicates better
agreement between the predicted and ground truth seg-
mentations, with a perfect score of 1 indicating complete
overlap.

• The Average Surface Distance (ASD) metric quantifies
the average distance between the surfaces of the predicted
segmentation and the ground truth. It is defined as

ASD =
1

|X|
∑
x∈X

d(x, Y ),

where d(x, Y ) represents the shortest Euclidean distance
from point x on the predicted surface to the nearest point
on the ground truth surface, and |X| denotes the number
of surface points in the predicted segmentation. A lower
ASD value indicates better spatial agreement between the
predicted and ground truth surfaces.

B. Results
We present the results of our method, as shown in Tables I,

II, III, and IV. Our method achieves SOTA performance on
most organ segmentation tasks in both datasets, indicating
the reliability and effectiveness of our approach. Specifically,
on the Synapse dataset with 10% labeled data (Table I), our
method outperforms existing methods in terms of average Dice
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TABLE I
COMPARISON OF DICE AND ASD ON THE SYNAPSE DATASET WITH 10% LABELED DATA. BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Method Avg. Dice ↑ Avg. ASD ↓ Dice Of Each Class

Sp RK LK Ga Es Li St Ao IVC PSV PA RAG LAG

V-Net (Fully) [34] 62.0 ± 1.2 10.3 ± 3.9 84.6 77.2 73.8 73.3 38.2 94.6 68.4 72.1 71.2 58.2 48.5 17.9 29.0
UA-MT [6] 18.0 ± 2.9 57.6 ± 7.9 27.1 7.1 17.0 24.4 0.0 80.6 15.6 39.3 16.7 4.4 2.0 0.0 0.0
URPC [35] 24.0 ± 10.0 75.0 ± 24.1 46.8 44.7 36.5 0.2 0.0 81.3 12.5 48.0 36.3 0.0 5.5 0.0 0.0
CPS [13] 20.1 ± 0.6 59.1 ± 1.2 33.8 29.5 29.2 41.2 0.0 46.9 15.5 48.6 27.6 0.0 4.7 0.0 0.0

SS-Net [36] 17.5 ± 10.9 66.1 ± 20.7 45.6 11.6 42.3 2.4 0.0 74.5 6.0 32.6 2.8 0.0 0.0 3.8 5.8
DST [37] 20.9 ± 1.5 61.3 ± 1.4 43.3 32.8 16.0 24.9 0.0 75.8 22.4 27.6 19.4 3.8 5.0 0.3 0.0
DePL [38] 21.0 ± 2.0 58.4 ± 7.6 34.2 32.2 17.3 27.2 0.0 65.7 16.8 40.8 29.3 2.8 6.8 0.0 0.0
Adsh [39] 20.9 ± 1.7 55.8 ± 4.8 36.0 47.7 32.0 37.9 0.0 53.0 25.0 45.4 26.8 0.2 3.7 0.0 0.0

CReST [40] 17.3 ± 0.5 38.3 ± 3.9 32.7 35.3 29.5 24.7 0.3 42.5 19.7 45.2 18.9 4.2 6.3 4.8 1.7
SimiS [41] 25.0 ± 2.3 43.9 ± 1.7 42.0 38.6 27.2 19.7 0.0 74.2 16.5 51.7 35.0 13.6 5.4 0.0 1.8

Basak et al. [42] 25.3 ± 3.6 50.0 ± 6.5 40.9 42.3 19.2 35.2 0.0 75.7 19.2 44.7 32.8 5.0 10.4 3.5 0.0
CLD [43] 22.4 ± 1.0 49.7 ± 3.6 39.3 43.9 25.6 12.8 0.0 73.3 14.3 14.1 25.7 8.8 6.1 0.2 1.1
DHC [33] 28.6 ± 2.1 25.0 ± 3.4 49.7 49.1 28.1 23.3 0.0 46.9 14.3 29.9 44.0 15.7 14.3 5.5 8.9

Ours 32.4 ± 2.2 19.5 ± 2.4 54.6 58.9 48.5 40.8 0.4 59.7 25.7 32.9 49.4 17.0 13.0 7.5 12.1

TABLE II
COMPARISON OF DICE AND ASD ON THE AMOS DATASET WITH 2% LABELED DATA. BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Method Avg. Dice ↑ Avg. ASD ↓ Dice Of Each Class

Sp RK LK Ga Es Li St Ao IVC PA RAG LAG Du Bl P/U

V-Net (Fully) [34] 76.5 2.0 92.2 92.2 93.3 65.5 70.3 95.3 82.4 91.4 85.0 74.9 58.6 58.1 65.6 64.4 58.3
UA-MT [6] 33.9 22.4 62.5 61.7 59.8 17.5 13.8 73.4 39.4 34.6 32.4 26.5 12.1 6.5 15.3 32.4 21.7
URPC [35] 38.3 37.5 60.8 57.7 56.5 34.6 0.0 78.4 41.4 53.3 49.6 40.4 0.0 0.0 30.1 42.5 30.6
CPS [13] 31.1 39.9 49.8 36.3 48.6 27.1 0.0 68.1 30.8 46.2 46.8 26.4 0.0 0.0 18.8 42.6 26.2

SS-Net [36] 17.4 59.0 37.7 20.1 26.3 9.0 3.3 57.1 25.1 28.4 28.2 0.0 0.0 0.0 0.0 26.5 0.2
DST [37] 30.6 31.8 49.6 34.6 40.3 27.3 2.2 55.4 30.1 45.7 41.7 24.8 20.3 2.4 18.3 41.9 24.5
DePL [38] 29.6 40.0 53.4 37.0 43.7 21.6 0.0 67.4 25.7 46.6 43.1 19.5 0.3 0.0 21.2 41.1 24.3
Adsh [39] 30.3 42.4 53.9 45.1 51.2 28.5 0.0 62.1 27.0 41.4 42.7 25.0 0.0 0.0 20.3 35.8 21.6

CReST [40] 26.9 27.1 37.7 50.1 42.2 5.7 8.8 46.7 29.1 35.0 38.2 19.9 7.1 11.3 15.1 35.6 21.0
SimiS [41] 36.8 26.1 57.8 58.6 58.6 22.9 0.0 70.9 38.0 52.0 47.0 32.4 20.2 11.5 18.1 39.9 25.5

B. et al. [42] 29.8 35.5 50.7 47.7 44.1 21.1 0.0 61.8 27.7 38.1 40.4 21.8 9.6 9.5 14.6 36.5 24.5
CLD [43] 36.2 27.6 55.8 55.8 59.1 23.9 0.0 69.9 38.2 50.1 44.5 32.3 18.9 9.2 18.8 42.2 24.9
DHC [33] 38.2 20.3 62.1 59.5 57.8 25.0 20.5 66.0 38.2 51.3 47.9 26.8 26.4 7.0 17.8 43.2 24.8

Ours 41.0 17.6 61.7 60.2 60.8 31.6 21.6 69.6 37.6 58.8 52.8 35.5 24.4 8.5 20.0 45.1 26.5

TABLE III
COMPARISON OF DICE AND ASD ON THE SYNAPSE DATASET WITH 20% LABELED DATA. BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Method Avg. Dice ↑ Avg. ASD ↓ Dice Of Each Class

Sp RK LK Ga Es Li St Ao IVC PSV PA RAG LAG

V-Net (Fully) [34] 62.0 ± 1.2 10.3 ± 3.9 84.6 77.2 73.8 73.3 38.2 94.6 68.4 72.1 71.2 58.2 48.5 17.9 29.0
UA-MT [6] 20.2 ± 2.2 71.6 ± 7.4 48.2 31.7 22.2 0.0 0.0 81.2 29.1 23.3 27.5 0.0 0.0 0.0 0.0
URPC [35] 25.6 ± 5.1 72.7 ± 15.5 66.7 38.2 56.8 0.0 0.0 85.3 33.9 33.1 14.8 0.0 5.1 0.0 0.0
CPS [13] 33.5 ± 3.7 41.2 ± 9.1 62.8 55.2 45.4 35.9 0.0 91.1 31.3 41.9 49.2 8.8 14.5 0.0 0.0

SS-Net [36] 35.0 ± 2.8 50.8 ± 6.5 62.7 67.9 60.9 34.3 0.0 89.9 20.9 61.7 44.8 0.0 8.7 4.2 0.0
DST [37] 34.4 ± 1.6 37.6 ± 2.9 57.7 57.2 46.4 43.7 0.0 89.0 33.9 43.3 46.9 9.0 21.0 0.0 0.0
DePL [38] 36.2 ± 0.9 36.0 ± 0.8 62.8 61.0 48.2 54.8 0.0 90.2 36.0 42.5 48.2 10.7 17.0 0.0 0.0
Adsh [39] 35.2 ± 0.5 39.6 ± 4.6 55.1 59.6 45.8 52.2 0.0 89.4 32.8 47.6 53.0 8.9 14.4 0.0 0.0

CReST [40] 38.3 ± 3.4 22.8 ± 9.0 62.1 64.7 53.8 43.8 8.1 85.9 27.2 54.4 47.7 14.4 13.0 18.7 4.6
SimiS [41] 40.0 ± 0.6 32.9 ± 0.5 62.3 69.4 50.7 61.4 0.0 87.0 33.0 59.0 57.2 29.2 11.8 0.0 0.0

Basak et al. [42] 33.2 ± 0.6 43.7 ± 2.5 57.4 53.8 48.5 46.9 0.0 87.8 28.7 42.3 45.4 6.3 15.0 0.0 0.0
CLD [43] 41.0 ± 1.2 32.1 ± 3.3 62.0 66.0 59.3 61.5 0.0 89.0 31.7 62.8 49.4 28.6 18.5 0.0 5.0
DHC [33] 48.6 ± 0.9 10.7 ± 2.6 62.8 69.5 59.2 66.0 13.2 85.2 36.9 67.9 61.5 37.0 30.9 31.4 10.6

Ours 50.0 ± 0.2 9.6 ± 1.1 83.5 78.9 76.7 74.2 21.4 83.9 35.4 61.4 40.7 33.0 33.3 6.4 19.6

and average ASD, achieving an average Dice of 32.4 and an
average ASD of 19.5. It demonstrates superior performance in
segmenting organs such as Sp, RK, LK, and Ga, with notable
improvements in Dice scores compared to the baseline. Sim-
ilarly, on the AMOS dataset with 2% labeled data (Table II),
our method surpasses other methods, achieving an average
Dice of 41.0 and an average ASD of 17.6. This performance
is particularly evident in organs like Es, Ao, and IVC, where
our method achieves significantly higher Dice scores.

Furthermore, with 20% labeled data on the Synapse dataset
(Table III), our method continues to demonstrate robust per-

formance with an average Dice of 50.0 and an average
ASD of 9.6. This indicates that our method can effectively
utilize refined pseduo label to improve segmentation accuracy.
Notably, the performance improvements are significant in
the segmentation of organs such as Li, St, and Ao. On the
AMOS dataset with 5% labeled data (Table IV), our method
achieves an average Dice of 50.1 and an average ASD of
8.6, outperforming other methods significantly. The results
highlight the model’s capability to accurately segment complex
structures with minimal labeled data, as seen with high Dice
scores in organs like RK, LK, and Ga.
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TABLE IV
COMPARISON OF DICE AND ASD ON THE AMOS DATASET WITH 5% LABELED DATA. BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Method Avg. Dice ↑ Avg. ASD ↓ Dice Of Each Class

Sp RK LK Ga Es Li St Ao IVC PA RAG LAG Du Bl P/U

V-Net (Fully) [34] 76.5 2.0 92.2 92.2 93.3 65.5 70.3 95.3 82.4 91.4 85.0 74.9 58.6 58.1 65.6 64.4 58.3
UA-MT [6] 42.1 15.4 59.8 64.9 64.0 35.3 34.1 77.7 37.8 61.0 46.0 33.3 26.9 12.3 18.1 29.7 31.6
URPC [35] 44.9 27.4 67.0 64.2 67.2 36.1 0.0 83.1 45.5 67.4 54.4 46.7 0.0 29.4 35.2 44.5 33.2
CPS [13] 41.0 20.3 56.1 60.3 59.4 33.3 25.4 73.8 32.4 65.7 52.1 31.1 25.5 6.2 18.4 40.7 35.8

SS-Net [36] 33.8 54.7 65.4 68.3 69.9 37.8 0.0 75.1 33.2 68.0 56.6 33.5 0.0 0.0 0.0 0.2 0.2
DST [37] 41.4 21.1 58.9 63.3 63.8 37.7 29.6 74.6 36.1 66.1 49.9 32.8 13.5 5.5 17.6 39.1 33.1
DePL [38] 41.9 20.4 55.7 62.4 57.7 36.6 31.3 68.4 33.9 65.6 51.9 30.2 23.3 10.2 20.9 43.9 37.7
Adsh [39] 40.3 24.5 56.0 63.6 57.3 34.7 25.7 73.9 30.7 65.7 51.9 27.1 20.2 0.0 18.6 43.5 35.9

CReST [40] 46.5 14.6 66.5 64.2 65.4 36.0 32.2 77.8 43.6 68.5 52.9 40.3 24.7 19.5 26.5 43.9 36.4
SimiS [41] 47.2 11.5 77.4 72.5 68.7 32.1 14.7 86.6 46.3 74.6 54.2 41.6 24.4 17.9 21.9 47.9 28.2

B. et al. [42] 38.7 31.7 68.8 59.0 54.2 29.0 0.0 83.7 39.3 61.7 52.1 34.6 0.0 0.0 26.8 45.7 26.2
CLD [43] 46.1 15.8 67.2 68.5 71.4 41.0 21.0 76.1 42.4 69.8 52.1 37.9 24.7 23.4 22.7 38.1 35.2
DHC [33] 49.5 13.8 68.1 69.6 71.1 42.3 37.0 76.8 43.8 70.8 57.4 43.2 27.0 28.7 29.1 41.4 36.7

Ours 50.1 8.6 69.3 76.8 77.6 31.6 45.1 87.1 47.3 68.8 58.0 46.2 24.4 37.7 32.1 29.1 16.9

Ground Truth CPS Ours Ground Truth CPS Ours

Fig. 6. Visualization of segmentation results on the Synapse dataset. The regions marked by red rectangles indicate the regions where the
segmentation results are clearly different.

Ground Truth URPC URPCOurs Ground Truth Ours

Fig. 7. Visualization of segmentation results on the AMOS dataset. The regions marked by red rectangles indicate the regions where the
segmentation results are clearly different.

By analyzing Fig. 6 and Fig. 7, our method demonstrates
excellent capability in accurately segmenting organ contours,
showcasing superior attention to detail and the ability to differ-
entiate between fine contours and blurry boundaries compared
to other models. This indicates that our method effectively
learns meaningful features through the process of optimizing
pseudo labels and enhancing pseudo labels quality. Moreover,
the visualizations reveal that our approach consistently im-
proves the sharpness and accuracy of segmentation across
different datasets.

C. Abalation study

Table V presents the results of our ablation study on the
Synapse dataset. We compare the performance of our method
with and without the components of superpixel refinement
with information entropy voting, triplet loss, and mutual
correction. The results demonstrate that each component con-
tributes significantly to the overall performance improvement
of our method.

Specifically, incorporating only the superpixel refinement
with information entropy voting increases the average Dice
score from 28.6 to 31.1 and reduces the average ASD from
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TABLE V
ABLATION STUDY ON THE SYNAPSE DATASET WITH 10% LABELED

DATA. BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Method Avg. Dice ↑ Avg. ASD ↓

Baseline (DHC [33]) 28.6 ± 2.1 25.0 ± 3.4
Only Refinement 31.1 ± 3.2 21.4 ± 3.0
Only Triplet Loss 29.7 ± 4.6 24.0 ± 9.0

Only Mutual Correction 29.8 ± 4.9 24.5 ± 7.5
Full 32.4 ± 2.2 19.5 ± 2.4

25.0 to 21.4, indicating a substantial improvement in segmen-
tation accuracy and boundary delineation. The introduction
of triplet loss alone yields an average Dice score of 29.7
and an average ASD of 24.0, showcasing its effectiveness in
enhancing feature similarity constraints. Similarly, the mutual
correction mechanism achieves an average Dice score of 29.8
and an average ASD of 24.5, highlighting its role in rectifying
pseudo labels errors. Combining all components results in
the highest performance, with an average Dice score of 32.4
and an average ASD of 19.5, thereby demonstrating the
synergistic effect of the proposed methods. These quantitative
improvements underscore the importance of each component
in the overall architecture and its contribution to achieving
SOTA results.

D. Performance comparison with different superpixel

TABLE VI
PERFORMANCE COMPARISON WITH DIFFERENT SUPERPIXEL METHODS

ON THE SYNAPSE DATASET WITH 10% LABELED DATA. BEST RESULTS

ARE HIGHLIGHTED IN BOLD.

Method Avg. Dice ↑ Avg. ASD ↓

Baseline (DHC [33]) 28.6 ± 2.1 25.0 ± 3.4
Compact Watershed [44] 28.5 ± 2.7 22.0 ± 3.3

Felzenszwalb [45] 29.7 ± 3.3 29.2 ± 14.0
Quickshift [46] 31.3 ± 1.8 17.8 ± 3.6

SLIC [28] 32.4 ± 2.2 19.5 ± 2.4

Table VI reveals the impact of various superpixel segmen-
tation methods on the Synapse dataset. SLIC achieves the
highest performance with an average Dice score of 32.4 and
an average ASD of 19.5. While all methods outperform the
baseline, SLIC stands out as the most effective.

TABLE VII
PERFORMANCE COMPARISON WITH DIFFERENT SUPERPIXEL NUMBER

ON SYNAPSE DATASET WITH 10% LABELED DATA AND AMOS DATASET

WITH 2% LABELED DATA. BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Dataset Segment Number Avg. Dice ↑ Avg. ASD ↓

Synapse
H ×W / 10 30.6 ± 4.37 25.2 ± 7.66
H ×W / 50 32.4 ± 2.2 19.5 ± 2.4
H ×W / 100 29.8 ± 4.92 24.5 ± 7.5

AMOS
H ×W / 10 39.6 21.7
H ×W / 50 41.0 17.6
H ×W / 100 39.1 18.2

Table VII illustrates the performance of our method on the
Synapse and AMOS datasets with varying superpixel numbers.

For both datasets, the model achieves optimal performance
with H×W / 50 segments. This indicates that the number of
superpixels plays a crucial role in the segmentation accuracy
and pseudo labels refinement process. A moderate number of
superpixels can effectively capture the structural information
of the organs and facilitate the refinement of pseudo labels. In
contrast, an excessive number of superpixels may introduce
noise and hinder the model’s ability to learn meaningful
features.

E. Accssment of efficacy on different baselines
Comparing with different baselines on the Synapse and

AMOS datasets (Table VIII), our method consistently outper-
forms the baselines, demonstrating its versatility and effec-
tiveness. On Synapse, our method significantly improves the
average Dice score and reduces the average ASD across most
baselines, such as enhancing CLD from 22.4 to 32.0 in Dice
and reducing ASD from 49.7 to 18.0. Similarly, on AMOS,
the model enhances performance, exemplified by DHC’s Dice
score increases from 38.2 to 41.0 and ASD reduces from 20.3
to 17.6.

F. Input perturbation analysis
As shown in Table IX, our method demonstrates supe-

rior robustness against perturbations on the Synapse dataset,
achieving higher segmentation accuracy under both weak and
strong noise conditions. Specifically, with weak noise, our
method attains an average Dice score of 27.8 and an average
ASD of 22.1, outperforming the baseline (23.9, 29.0). Under
strong noise, our method achieves 24.2 and 34.2, compared
to the baseline’s 20.6 and 30.5. This resilience is attributed to
the superpixel and mutual correction framework, effectively
mitigating the impact of perturbations.

V. DISCUSSION

(a) label pixels (b) pesudo label (c) refined

small target
disapper

wrong target 
refinement

Fig. 8. Failure cases of our method on the Synapse dataset. (a) Original
image. (b) Pseudo label. (c) Refined pseudo label.

Analyzing Fig. 8, we can identify several issues with our
method. The primary issue lies in the reliance on pseudo labels
refinement using superpixel methods during the early stages of
training when the model has not yet converged. Initially, this
refinement significantly improves the quality of pseudo labels.
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TABLE VIII
PERFORMANCE COMPARISON WITH DIFFERENT BASELINES ON THE SYNAPSE DATASET WITH 10% LABELED DATA AND AMOS DATASET WITH 2%

LABELED DATA. ↗ AND ↘ INDICATE INCREASE AND DECREASE, RESPECTIVELY.

Method
Synapse AMOS

Before After Before After
Avg. Dice ↑ Avg. ASD ↓ Avg. Dice ↑ Avg. ASD ↓ Avg. Dice ↑ Avg. ASD ↓ Avg. Dice ↑ Avg. ASD ↓

URPC [35] 24.0 ± 10.0 75.0 ± 24.1 24.8 ± 10.3 ↗ 74.0 ± 25.2 ↘ 38.3 37.5 38.9 ↗ 30.8 ↘
CPS [13] 20.1 ± 0.6 59.1 ± 1.2 21.4 ± 1.1 ↗ 57.2 ± 2.1 ↘ 31.1 39.9 31.6 ↗ 40.6 ↗
DST [37] 20.9 ± 1.5 61.3 ± 1.4 21.6 ± 0.4 ↗ 51.7 ± 9.7 ↘ 30.6 31.8 32.2 ↗ 40.5 ↗
DePL [38] 21.0 ± 2.0 58.4 ± 7.6 21.6 ± 0.8 ↗ 53.8 ± 2.3 ↘ 29.6 40.0 30.6 ↗ 35.7 ↘
Adsh [39] 20.9 ± 1.7 55.8 ± 4.8 22.0 ± 1.1 ↗ 51.1 ± 7.2 ↘ 30.3 42.4 34.9 ↗ 26.5 ↘

CReST [40] 17.3 ± 0.5 38.3 ± 3.9 19.3 ± 4.9 ↗ 31.7 ± 2.0 ↘ 26.9 27.1 31.8 ↗ 25.6 ↘
SimiS [41] 25.0 ± 2.3 43.9 ± 1.7 28.7 ± 2.8 ↗ 25.8 ± 3.3 ↘ 36.8 26.1 39.9 ↗ 22.5 ↘
CLD [43] 22.4 ± 1.0 49.7 ± 3.6 32.0 ± 2.3 ↗ 18.0 ± 1.8 ↘ 36.2 27.6 37.5 ↗ 26.0 ↘
DHC [33] 28.6 ± 2.1 25.0 ± 3.4 32.4 ± 2.2 ↗ 19.5 ± 2.4 ↘ 38.2 20.3 41.0 ↗ 17.6 ↘

TABLE IX
INPUT PERTURBATION ANALYSIS ON THE SYNAPSE DATASET WITH 10%

LABELED DATA, WHERE WEAK NOISE ORIGINATES FROM RANDOM

VARIATIONS IN HUE, SATURATION, AND CONTRAST, WHILE STRONG

NOISE IS GENERATED BY THE ADDITION OF RANDOM GAUSSIAN NOISE.

Method Noise level Avg. Dice ↑ Avg. ASD ↓

Baseline (DHC [33])
weak 23.9 ± 2.2 29.0 ± 2.4
strong 20.6 ± 1.9 30.5 ± 2.4

Ours
weak 27.8 ± 2.2 22.1 ± 3.2
strong 24.2 ± 5.2 34.2 ± 15.4

However, as the model converges, the effectiveness of pseudo
labels refinement becomes constrained by the limitations of the
superpixel segmentation technique. For small targets, an insuf-
ficient number of superpixels can result in the disappearance
of these targets during the refinement process, thus degrading
the quality of pseudo labels (as illustrated in the first example
in Fig. 8). Moreover, the precision of pseudo labels refinement
remains constant throughout the training process. While this
leads to substantial improvements during the early stages, it
becomes less beneficial once the model has converged. In some
cases, it can even introduce misleading boundary results (as
shown in the second example in Fig. 8).

Additionally, defining and selecting the most similar and
most dissimilar pixel points for triplet loss poses a notewor-
thy challenge. Improper selection can render the triplet loss
ineffective for model optimization and may cause instability
in training. Furthermore, the mutual correction mechanism
depends on the predictions of two subnetworks. If both sub-
networks produce inaccurate predictions in certain regions,
the correction mechanism might fail to function effectively
and could potentially introduce additional errors. Setting an
appropriate threshold to determine the prediction differences
between the two subnetworks is also crucial.

In future, we plan to explore more advanced pseudo labels
optimization algorithms, employ more precise methods to
evaluate the impact of pseudo labels refinement on label qual-
ity, and investigate adaptive confidence level categorization
methods to further enhance the model’s performance.

VI. CONCLUSION

In this paper, we propose a novel training approach for
semi-supervised medical image segmentation, which improves

performance by addressing the underutilization of low con-
fidence pseudo labels and enhancing pseudo labels quality.
Our method integrates superpixel refinement with information
entropy voting to leverage low confidence pseudo labels at
the image level. At the feature level, triplet loss is employed
to enforce similarity constraints among boundary and in-
ternal features, maximizing the utilization of pseudo labels.
Additionally, mutual correction utilizes dual subnetworks to
iteratively identify and rectify pseudo labels errors, thereby
improving overall pseudo labels quality. Our method achieves
SOTA results on two publicly available datasets for multi-
organ segmentation, validating its effectiveness and reliability.
Furthermore, our ablation study and performance comparison
with different superpixel methods demonstrate the importance
of each component in the overall architecture and the impact
of superpixel segmentation on segmentation accuracy. Our
method also exhibits improvements on different baselines
and robustness against input perturbations, highlighting its
potential for real-world applications.
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