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Enhancing Medical Image Segmentation with
Self-Attention-Embedded LSTM Mechanism
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Abstract—Vision-based measurement technologies in medical
imaging have greatly enhanced automated diagnostics. However,
fine-grained medical image segmentation remains challenging due
to the complex structures and the need for accurate localization
of anatomical regions. In this paper, we propose a novel deep
learning model named LSTMSA, which integrates Self-Attention
(SA) mechanism within a Long Short-Term Memory (LSTM)
module to address two key challenges in medical image segmen-
tation. Firstly, conventional approaches suffer from premature
convergence during training, leading to suboptimal segmentation
results. LSTMSA achieves a more balanced training process
by embedding SA within LSTM, allowing the model to focus
on local information early on while fully leveraging LSTM’s
temporal modeling capabilities throughout training. Secondly, SA
mechanism introduces rank collapse issue, potentially resulting
in information loss and blurred segmentation in complex med-
ical images. LSTMSA is designed to preserve high-dimensional
feature representations, ensuring that details and contextual
information are maintained. Experimental results on four medical
image datasets and twenty baselines demonstrate the superiority
of LSTMSA over existing methods, preserving critical anatomical
features and achieving state-of-the-art segmentation accuracy.
The code is available at https://github.com/yeshunlong/LSTMSA.

Index Terms—medical image segmentation, deep learning, long
short-term memory (LSTM), self-attention (SA), rank preserva-
tion, feature representation.

I. INTRODUCTION

THE rapid advancement of vision-based methods has sig-
nificantly propelled the progress of computer-aided med-

ical diagnostic technologies [1]. The nature of medical images,
characterized by intricate anatomical structures and the need
for precise localization [2], [3], requires innovative approaches
to achieve accurate and robust segmentation results [4], [5],
[6]. Recent years, researchers have been dedicated to enhance
model performance through various contextual modules. For
example, they have explored the individual implementation of
Long Short-Term Memory (LSTM) and Self-Attention (SA)
mechanism to enhance the extraction of contextual informa-
tion. LSTM is adept at capturing temporal and sequential
dependencies within the data [7], while SA mechanism ex-
cels in modeling global contextual relationships [8]. Each
approach independently contributes to the improvement of
context-awareness in segmentation models, addressing the
critical challenge of capturing long-range dependencies within
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Fig. 1. The comparison of loss curves between LSTM based model and
LSTMSA based model (Ours). Accompanying the curves are CT scan images
demonstrating the ground truth and the progressive improvement of the deep
fusion model’s segmentation accuracy, with the final image marked by a star
symbolizing the lowest loss point.

medical images [9]. These strategies have yielded promising
results in medical imaging applications, contributing to more
precise segmentation and clinically relevant outcomes [10],
[11]. Furthermore, such advanced methodologies enhance the
model’s ability to interpret complex image sequencesand en-
ables the dynamic adjustment of focus [12], [13], thereby
improving the detection of subtle nuances and variations
within medical images [14]. This synergy between temporal
understanding and attentive contextual analysis significantly
boosts the model’s diagnostic precision, providing a more
detailed and comprehensive understanding of patient-specific
conditions [15].

Despite the notable advantages of SA and LSTM mecha-
nism, these modules still encounter certain challenges, espe-
cially in clinical applications. Firstly, the conventional LSTM
module embedding often results in a rapid initial reduction
of loss, which can lead to premature convergence. This
issue not only impedes the model’s ability to retain long-term
memory but also limits further accuracy improvements during
later training stages [16]. In medical image segmentation, this
premature convergence can severely compromise the model’s
capacity to capture intricate anatomical details over extended
sequences, thus undermining segmentation performance. The
root of this issue lies in the model’s inefficient propagation
of past information due to recurrent connections, coupled
with a neglect of local details, which ultimately prevents the
LSTM from fully realizing its potential. A balanced approach
that fosters the synergy between SA and LSTM is essential
for sustained learning progress. Fig. 1 illustrates the loss
curves of standard LSTM network compared to our hybrid
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Fig. 2. Comparative analysis of the rank of the output matrix in neural
networks of varying depths, contrasting the performance of p ure SA, shallow
fusion of LSTM and SA, and deep fusion of LSTM and SA (Ours). The
three t-SNE visualizations on the right highlight the clustering of features at
different layers.

model, where our approach demonstrates a steadier and more
uniform reduction in loss, indicative of enhanced learning
stability. As training progresses, our method not only achieves
a lower loss level in a more stable manner but also effectively
integrates LSTM and SA strategies for improved temporal
retention and long-range dependency capture. This stability
is critical in medical image segmentation, where the ability
to accurately segment across varying temporal and spatial
contexts directly impacts clinical outcomes. Visual evidence
from computed tomography (CT) scan images supports the
quantitative improvements, showing enhanced segmentation
accuracy that closely mirrors the ground truth over time.

Another significant challenge in medical image segmenta-
tion arises from the use of pure SA networks, particularly
their susceptibility to a phenomenon where the network con-
verges exponentially (with depth) to a rank-1 matrix, causing
all tokens to become indistinguishable [17], a problem we
refer to as rank collapse. In the context of medical image
segmentation, this rank collapse can lead to a loss of critical
spatial information, reducing the model’s ability to distinguish
between different tissue types or pathological features, thereby
diminishing segmentation quality. This issue is driven by
the SA mechanism functioning as an ensemble of shallow
networks, which inherently limits matrix rank. To counteract
this, advanced architectural designs are necessary to pre-
serve high-dimensional features. Fig. 2 evaluates rank stability
across network depths, demonstrating the effectiveness of our
deep fusion method. Our approach consistently maintains a
high rank, showcasing resilience against rank collapse, unlike
pure SA networks, which exhibit a significant reduction in
rank with increasing depth. t-SNE [18] visualizations further
validate our model’s superior feature representation, leading to
smoother loss transitions and enhanced segmentation accuracy
by maintaining precise feature delineation.

To address the aforementioned challenges in medical image
segmentation, we present a novel deep learning model known
as SA-embedded LSTM (LSTMSA). Within the architecture
of LSTMSA, we employ a deep embedding of the SA mech-
anism into the LSTM module, with the overarching goal of
achieving a smoother training process and more efficient fea-

ture representation. This innovative approach involves integrat-
ing the SA mechanism at various time steps within the LSTM
module, with the dual objective of maintaining a stronger
emphasis on contextual information during the early stages
of training, while harnessing the full spatiotemporal modeling
capabilities inherent to LSTM throughout the entirety of the
training process.

The contributions of this paper can be summarized as
follows:

• Deep Fusion of LSTM and SA: Our first innovation lies
in the deep integration of the LSTM and SA mecha-
nism within a single module. This integration enhances
the model’s capability to capture both global and local
contextual information effectively, allowing for superior
medical image segmentation results.

• Resolving Premature Convergence and Rank Collapse
Challenges: The second noteworthy innovation of this
work is the resolution of two prominent challenges
in contextual models. Firstly, LSTMSA effectively ad-
dresses the issue of premature loss convergence, ensuring
a more balanced and stable training process. Secondly,
it tackles the problem of rank collapse inherent in pure
SA networks, preserving high-dimensional feature repre-
sentations, and averting information loss, particularly in
complex medical image structures.

• State-of-the-art (SOTA) Performance on Four Public
Datasets and Improvements on Twenty Baselines: Our
third innovation manifests in the validation of LSTMSA’s
performance on diverse medical image datasets. Through
extensive experimentation, LSTMSA consistently outper-
forms existing methodologies, achieving SOTA results in
terms of segmentation accuracy and robustness. More-
over, LSTMSA demonstrates significant improvements
over twenty baseline models across four widely used
medical image datasets. These superior outcomes under-
score the practical significance and clinical utility of our
proposed model.

II. BACKGROUND

A. Literature Review

Separated LSTM and SA for Embedded Contextual
Information in Medical Image Segmentation: Recent ad-
vancements in medical image segmentation have focused on
embedding contextual information into Convolutional Neural
Networks (CNNs), particularly within encoder-decoder archi-
tectures such as UNet [19]. These models capture both local
semantic and global contextual features, improving segmen-
tation of fine-grained structures [5]. Moreover, combining
CNNs with RNNs, such as LSTM, has been effective for
capturing temporal dependencies in 3D medical images, aiding
in the segmentation of complex anatomical structures [6].
The inclusion of SA mechanism has further enriched these
networks from the other side, enhancing their ability to capture
contextual dependencies and improving performance across
diverse medical imaging datasets [20], [21], [22]. Collectively,
these advancements have significantly improved the accuracy
and reliability of medical image segmentation.
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Fig. 3. Overview of LSTMSA module. The vertical data flow represents the processing over time in the input sequence, and the horizontal data flow represents
the state updates within each cell.

Hybrid LSTM and SA Mechanism in Medical Im-
age Segmentation: Several studies have explored hybrid ap-
proaches that combine LSTM and SA mechanisms for medical
image segmentation [23], [24], [25]. Typically, these meth-
ods use shallow fusion strategies, stacking the two modules
where one’s output serves as the other’s input [26], [27].
This approach, however, fails to fully leverage the comple-
mentary strengths of LSTM and SA. Alternatively, deeper
integrations have been proposed, such as SwinLSTM [28], and
RWKV [29], achieving more intricate fusions. Nevertheless,
these models frequently fail to adequately tackle key chal-
lenges mentioned above, namely, premature convergence and
rank collapse, and they do not deeply explore the individual
contributions of LSTM and SA. Consequently, they may
miss opportunities to optimize the interaction between these
components, which in turn limits their effectiveness in medical
image segmentation.

B. Loss Convergence Analysis
Lemma: A rapid reduction in loss at the early stages of

training suggests an aggressive weight adjustment strategy.
Intuitive Proof: The initial phase of training a neural

network is critical for setting the trajectory towards optimal
performance. During this period, a sharp decrease in the
loss function, L, signifies that the network’s weights, W ,
are being adjusted significantly in response to the computed
gradients. This rapid reduction can be intuitively understood as
the network quickly moving towards a more favorable region
within the loss landscape.

The crux of the proof involves demonstrating that such an
aggressive weight adjustment mechanism, directly contributes
to the network’s inability to preserve information over long
periods, thereby affecting its long-term dependency modeling
capabilities [16]. This is because an aggressive decay of
weights W inherently biases the network towards recent data
points, diminishing its capacity to integrate and remember
older information. Thus, a faster initial decrease in L not only

signifies efficient early learning but also implies a propensity
towards aggressive weight decay, leading to compromised
long-term memory within the network. This relationship un-
derscores the intricate balance between rapid learning and the
preservation of historical data in the context of neural network
training dynamics.

Based on the aforementioned information, we observe a log-
ical chain that encapsulates the dynamics of network training
and performance. Rapid convergence is characterized by an
initial swift decline in loss, which can be associated with
the network weights decaying at an aggressive rate. This
aggressive decay of network weights is, in fact, indicative of
poorer long-term memory capabilities within the network [16].
These insights collectively underscore a pivotal aspect of
neural network behavior, particularly in the context of training
efficacy and memory retention capabilities.

C. Rank Collapse Analysis
The limitation of the pure SA mechanism lies in its potential

to introduce the issue of ”token uniformity” when using deep
network to process input sequences, which can subsequently
impact the network’s performance and generalization capa-
bilities [17]. Specifically, SA networks tend to assign equal
importance to each token when processing input sequences,
resulting in an output matrix with a lower rank. This problem is
known as the ”token uniformity” problem, and its fundamental
cause can be attributed to the decomposition and induction bias
inherent in the SA mechanism.

The ”token uniformity” problem can have significant reper-
cussions for sequence processing tasks. Since the network
cannot efficiently distinguish the importance of individual
tokens in the input sequence, it may result in the model
overlooking crucial information, affecting its ability to accu-
rately model the internal structure of the sequence. In tasks
such as medical image segmentation, this uniformity may lead
to inefficient attention to specific regions within the image,
thereby impacting the accuracy of segmenting target structures.
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III. METHOD

A. Module Design Overview

As illustrated in Fig. 3, the LSTMSA module is designed
to address two critical challenges: premature convergence in
LSTM based models and rank collapse in pure SA mecha-
nism. By deeply embedding SA into the LSTM architecture,
LSTMSA effectively balances the strengths and mitigates the
limitations of both components, enabling effective capture of
sequential temporal dependencies typical of LSTM and the
intricate internal dependencies facilitated by SA for medical
image segmentation. The module’s design is guided by the
following principles:

Firstly, to counteract rapid convergence in LSTM models,
which often leads to the loss of effective long-term memory
modeling early in training, LSTMSA integrates the SA ma-
trices calculation into LSTM’s basic units. This integration
enhances the model’s capacity to capture long-range depen-
dencies by dynamically adjusting based on global sequence
information, thereby mitigating premature convergence. SA al-
lows the model to maintain a better understanding of long-term
dependencies by leveraging global contextual information.

Secondly, LSTMSA addresses the rank collapse issue asso-
ciated with pure SA networks, where SA tends to produce low-
rank weight matrices, potentially compromising performance
and generalization. To combat this, LSTMSA introduces a
novel combination of query, key, and value matrices, decom-
posed and integrated into the LSTM unit states. This design
enhances the model’s ability to capture various aspects of the
input sequence, thereby maintaining higher rank in the output
matrix and improving the network’s representational capacity.

B. Module Design Details

Alg. 1 outlines the calculation process of the LSTMSA
module. The decision to use the hidden states as the key
matrix is based on the necessity of incorporating contextual
information that spans across different time steps (patches or
slices in medical image). In medical imaging, such temporal
and historical context is crucial for accurately segmenting
structures that evolve or appear differently over time. This
design is supported by our experimental analysis of time-
step dependency IV-D, which demonstrates that the key ma-
trix, derived from LSTM’s hidden states, provides the most
comprehensive representation of this temporal context. On the
other hand, the input data, while serving as query and value
matrices, allow the model to integrate immediate information
with historical context during decision-making. This balance
between using historical context (as keys) and immediate
input data (as queries and values) is further validated by
our ablation study IV-E1, which show that this configuration
optimally enhances the model’s performance in medical image
segmentation.

By decomposing and reintegrating query, key, and value
matrices within the LSTM framework, the model explores
input data nuances more effectively, significantly boosting its
ability to represent complex dependencies. The cross attention
mechanism excels at uncovering dependencies across input

Algorithm 1 LSTMSA Calculation Process
Require: Current cell input xcur, current hidden state

hcur, weight matrices Wi,Wf ,Wo,Wg , bias vectors
bi, bf , bo, bg , sequence length l, model dimensionality
dmodel

Ensure: Next cell state cnext, next hidden state hnext

1: Step 1: Gate Output Calculation
2: xh← [xcur;hcur]
3: i← σ(Wi ⊙ xh+ bi)
4: f ← σ(Wf ⊙ xh+ bf )
5: o← σ(Wo ⊙ xh+ bo)
6: g ← tanh(Wg ⊙ xh+ bg)
7: Step 2: Decomposed Matrix Attention
8: D ← o+ tanh(c · f + i · g)
9: Step 3: Cross Attention

10: CA← Softmax
(

D·hT
cur√

dhcur

)
·D

11: Step 4: Feature Fusion
12: x← [ccur;CA]
13: F ← ReLU(W (x))
14: Step 5: Dynamic Positional Encoding
15: Pdyn ← Variable(shape = [l, dmodel], trainable = True)
16: PFdyn ← F + Pdyn
17: Step 6: Computing the Next Cell State
18: cnext ← ccur + PFdyn
19: hnext ← PFdyn
20: return cnext, hnext

segments, leading to a more granular understanding of se-
quence relationships. The deep fusion of LSTM states with
cross attention outcomes preserves data integrity, effectively
addressing rank collapse issues common in pure SA networks.
Additionally, the incorporation of dynamic positional encod-
ing differentiates sequence element positions, enhancing the
model’s understanding of order and structure within sequences,
making LSTMSA a robust solution for complex, sequential
data tasks.

IV. EXPERIMENTS AND RESULTS

A. Implementation Details

For the assessment of our proposed modules on 2D inputs,
we conduct experiments on the following datasets:

• Synapse dataset: This dataset encompasses various organ
segmentation tasks1.

• ISIC2018 dataset: Focusing on skin lesion segmentation,
this dataset has been employed in previous studies by
Codella et al. [30] and Tschandl et al. [31].

In scenarios involving 3D inputs, we perform experiments
on the following datasets:

• ACDC dataset: Dataset for heart segmentation2.
• CVC-ClinicDB dataset: Addressing polyp segmentation

in colonoscopy videos, this dataset has been used for
benchmarking segmentation methods in the work by
Bernal et al. [32].

1https://www.synapse.org/#!Synapse:syn3193805/wiki/217789
2https://www.creatis.insa-lyon.fr/Challenge/acdc/
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TABLE I
QUANTITATIVE RESULTS ON SYNAPSE MULTI-ORGAN DATASET AND ISIC2018 SEGMENTATION DATASET. DICE SCORES (%), HD95 ARE REPORTED.
THE BEST RESULTS ARE BOLDED. THE SECOND BEST RESULTS ARE UNDERLINED. ↑ DENOTES HIGHER VALUE INDICATING BETTER PERFORMANCE, ↓

DENOTES LOWER VALUE INDICATING BETTER PERFORMANCE. BASELINES ARE STARRED.

Synapse ISIC2018
Method DICE ↑ HD95 ↓ Aorta GB KL KR Liver PC SP SM Method DICE ↑ HD95 ↓
UNet [19] 70.11 44.69 84.00 56.70 72.41 62.64 86.98 48.73 81.48 67.96 UNet [19] 87.41 4.03
TransUNet [4] 77.48 31.69 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62 DWUNet [35] 87.47 4.55
MT-UNet [9] 78.59 26.59 87.92 64.99 81.47 77.29 93.06 59.46 87.75 76.81 ResUNet [36] 87.91 3.49
SwinUNet [37] 79.13 21.55 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60 UNet++ [38] 88.32 3.83
MISSFormer [39] 81.96 18.20 86.99 68.65 85.21 82.00 94.41 65.67 91.92 80.81 R2UNet [40] 90.13 3.62
TransCASCADE [41] 82.68 17.34 86.63 68.48 87.66 84.56 94.43 65.33 90.79 83.52 DCSAU-Net [33]* 90.41 2.21
MERIT [10]* 84.22 16.51 88.38 73.48 87.21 84.31 95.06 69.97 91.21 84.15 MSCA-Net [42] 90.52 2.79
LSTMSA (Ours) 84.85 15.83 89.51 73.32 85.88 84.88 95.44 69.20 90.99 84.49 LSTMSA (Ours) 91.42 2.53

We assess the performance of our proposed modules on
these datasets using the DICE score and Hausdorff distance
95% (HD95) as evaluation metrics. The DICE score quantifies
the overlap between predicted and ground truth masks, defined
as DICE = 2×|X∩Y |

|X|+|Y | , where X and Y are the predicted and
ground truth masks. The HD95 measures the 95th percentile
of the maximum distance between the two masks, offering a
comprehensive evaluation of segmentation quality and edge
accuracy.

Across all the aforementioned datasets, our approach inte-
grate the U-shaped network with our proposed modules as
a baseline model. Importantly, we introduce the proposed
modules into the baseline models’ architecture without any
additional alterations to the original network structure and
employ the same training strategies as the baseline models, in-
dicating the seamless integration of our proposed modules into
existing network structures for enhanced model performance,
without necessitating extra training pipeline configuration or
hyperparameter adjustments.

Notably, our experiments encompass twenty baseline mod-
els across the four datasets. In the subsequent sections, we will
present the results obtained from the best-performing baseline
model on each dataset, with results from the remaining base-
line models available in subsequent analyses.

The specific baseline models utilized on the Synapse,
ISIC2018, ACDC, and CVC-ClinicDB datasets are
MERIT [10], DCSAU-Net [33], MT-UNet [9], and
ESFPNet [34], respectively.

It is important to emphasize that the compared methods
in our experiments represent the most advanced approaches
for each dataset in recent years. The results achieved by the
baseline models signify the SOTA performances attained by
these models on their respective datasets.

B. Results on 2D Input

The Synapse Multi-Organ Segmentation dataset is com-
posed of abdominal CT scans consists of eight distinct ab-
dominal organs: the aorta, gallbladder (GB), spleen (SP),
left kidney (KL), right kidney (KR), liver, pancreas (PC),
and stomach (SM). This dataset comprises a total of 30
abdominal CT scans, each typically spanning 85 to 198 slices,
with a pixel resolution of 512 × 512 per slice. The primary
objective revolves around the precise segmentation of these
eight abdominal organs within the dataset.

(a) Ground Truth (c) LSTMSA(b) MERIT*

Arota

GB

SM

LK

RK

Liver

PC

SP

Fig. 4. 2D visualization results on the Synapse dataset. (a) Ground truths,
(b) MERIT (baseline are starred), (c) LSTMSA (Ours). The red rectangular
box indicates the zoomed-in region.

The ISIC2018 dataset constitutes a collection of skin lesion
images, encompassing both dermoscopic and clinical variants.
The central challenge lies in the development and evaluation of
automated segmentation methodologies tailored for accurately
delineating skin lesions present within these diverse image
types.

The data in Table I shows that networks incorporating the
LSTMSA module consistently achieve SOTA results across
both 2D datasets. For instance, in the ISIC2018 dataset,
LSTMSA achieves a precision score of 91.42, significantly
outperforming other baseline methods, indicating superior
segmentation performance on 2D inputs. This performance
improvement is linked to the LSTMSA’s impact on loss attenu-
ation (Fig. 1) and rank preservation. The module stabilizes loss
reduction during early training, reducing the risk of rapid loss
decline, which facilitates better convergence. Moreover, the
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TABLE II
QUANTITATIVE RESULTS ON ACDC AND CVC-CLINICDB DATASET. DICE SCORES (%) AND HD95 ARE REPORTED. THE BEST RESULTS ARE BOLDED.

THE SECOND BEST RESULTS ARE UNDERLINED. ↑ DENOTES HIGHER VALUE INDICATING BETTER PERFORMANCE, ↓ DENOTES LOWER VALUE INDICATING
BETTER PERFORMANCE. BASELINES ARE STARRED.

ACDC CVC-ClinicDB
Method DICE ↑ HD95 ↓ RV Myo LV Method DICE ↑ HD95 ↓
TransUNet [4] 89.71 2.54 88.86 84.53 95.73 ColonSegNet [43] 88.62 4.56
SwinUNet [37] 90.00 4.52 88.55 85.62 95.83 FCBFormer [14] 92.53 3.21
MT-UNet [9]* 90.43 2.23 86.64 89.04 95.62 SSFormer-S [44] 92.68 1.45
MISSFormer [39] 90.86 2.13 89.55 88.04 94.99 HarDNet-DFUS [45] 93.32 1.29
PVT-CASCADE [41] 91.46 1.09 88.9 89.97 95.50 FANet [46] 93.55 1.15
TransCASCADE [41] 91.63 1.09 89.14 90.25 95.50 TGANet [47] 94.57 1.47
MERIT [10] 92.32 1.08 90.87 90.00 96.08 SSFormer-L [44] 94.72 0.73
FCT [48] 92.84 5.29 92.02 90.61 95.89 ESFPNet [34]* 94.90 1.21
LSTMSA (Ours) 92.86 1.07 91.54 90.77 96.27 LSTMSA (Ours) 96.11 0.53

(b) Ground Truth(a) Input (d) LSTMSA(c) DCSAU-Net*

Fig. 5. 2D visualization results on the ISIC2018 dataset. (a) Input, (b) Ground
Truth, (c) DCSAU-Net (baseline are starred), (d) LSTMSA (Ours). The red
rectangular box indicates the zoomed-in region.

cross attention mechanism in LSTMSA accurately captures
key image features, reducing rank collapse and enhancing
overall segmentation precision.

We also visualize network performance with the LSTMSA
module, as depicted in Fig. 4 and Fig. 5. These figures
compare LSTMSA with other baseline methods in organ
segmentation tasks, showing that LSTMSA produces notably
precise results, particularly in small organ segmentation. The
segmentation boundaries generated by LSTMSA are clearer
and more accurate, effectively eliminating blurriness and im-
precision. Detailed analysis reveals that the LSTMSA module
exhibits heightened attention accuracy around small organ
edges, capturing even subtle features within the structures.

C. Results on 3D input

The ACDC dataset encompasses cardiac magnetic reso-
nance (MR) images aimed at facilitating precise segmentation

LV

Myo

RV

ED

ES

Fig. 6. 3D visualization results on the ACDC dataset. ED is End Diastolic,
and ES is End Systolic.

(b) Ground Truth(a) Input (d) LSTMSA(c) ESFPNet*

Fig. 7. 2D visualization results on the CVC-ClinicDB dataset. (a) Input, (b)
Ground Truth, (c) ESFPNet (baseline are starred), (d) LSTMSA (Ours). The
red rectangular box indicates the zoomed-in region.

of cardiac structures, including the right ventricle (RV), left
ventricle (LV), and myocardium (Myo). Comprising a diverse
set of 100 cardiac MRI scans, each originating from distinct
patients, the dataset serves as the foundation for the segmen-
tation challenge.

The CVC-ClinicDB dataset is a publicly accessible resource
curated explicitly for research in the domain of colonoscopy
image analysis, with a specific emphasis on tasks related
to lesion segmentation. Comprised of a rich collection of
high-definition colonoscopy images captured during clinical
procedures, the dataset’s primary objective revolves around
facilitating the development and assessment of algorithms tai-
lored for the automatic detection and segmentation of lesions
within colonoscopy images.
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Fig. 8. Time-step dependency analysis on ACDC dataset. The x-axis
represents the percentage of slices masked, and the y-axis represents the
performance in terms of DICE and HD95.

Our analysis of 3D medical image segmentation, as shown
in Table II, demonstrates that the integration of the LSTMSA
module significantly improves performance over SOTA meth-
ods, particularly those relying solely on attention mechanisms.
For example, on the ACDC dataset, the LSTMSA-enhanced
model achieves a DICE score of 92.86, surpassing the MT-
UNet baseline by nearly 3%, and delivers high precision in
segmenting various cardiac structures, with scores of 91.54,
90.77, and 96.27 for RV, Myo, and LV, respectively. These re-
sults highlight LSTMSA’s effectiveness in capturing complex
features and offering nuanced improvements.

On the CVC-ClinicDB dataset, the LSTMSA model
achieves a DICE score of 96.11, outperforming advanced mod-
els like ESFPNet and TGANet. This performance underscores
LSTMSA’s capability in handling intricate segmentation tasks,
pushing beyond current SOTA levels in 3D segmentation. The
model’s edge lies in its integration of SA with sequential
modeling through LSTM, which enhances the network’s abil-
ity to capture both spatial and temporal dependencies. This
combination refines segmentation accuracy and generalization,
particularly visible in the sharper and more accurate bound-
aries in Fig. 6 and Fig. 7.

D. Validation of Module Structure Design

To demonstrate that using the LSTM states combination as
the key matrix, rather than as the query and value matrices,
better accommodates both long-term and short-term memory
information, we conduct a time-step dependency analysis. This
analysis assesses the model’s sensitivity to specific time steps
in the input sequence, thereby validating the role of long-
term and short-term information within the model. The core
approach of this method involves selectively removing or
masking certain time steps in the input sequence and observing
the resultant changes in model performance. Accordingly,
we configure three distinct variants, using the LSTM states
combination as the query, key, and value matrices respectively.

Fig. 8 illustrates the performance curves for DICE and
HD95 metrics on the ACDC dataset, under different masking

TABLE III
ABLATION STUDY ON ACDC DATASET. DICE SCORES (%) AND HD95

ARE REPORTED. ✓ DONATES USED, AND ✗ DONATES NOT USED. THE BEST
RESULTS ARE BOLDED. THE SECOND BEST RESULTS ARE UNDERLINED.

SA(X,X,X) DENOTES USING ALL INPUT DATA FOR QKV SELECTION,
SA(H,H,H) DENOTES ALL USING HIDDEN STATES FOR QKV SELECTION.

Method SA LSTM DICE ↑ HD95 ↓
MT-UNet [9] (Baseline) ✗ ✗ 90.43 2.23
Only SA ✓ ✗ 91.17 1.77
Only LSTM ✗ ✓ 91.69 1.76
No Cross Attention (SA(x,x,x)) ✓ ✓ 92.43 1.22
No Cross Attention (SA(h,h,h)) ✓ ✓ 92.34 1.17
No Dynamic Positional Encoding ✓ ✓ 92.38 1.18
LSTMSA (Ours) ✓ ✓ 92.86 1.07

proportions (0.2, 0.4, 0.6, 0.8). The experiments are performed
three times, and the results are recorded as mean values and
standard deviations. The results reveal that the configuration
with the LSTM states combination as the key matrix exhibited
the least performance degradation upon the removal of time
steps and demonstrated superior robustness. This supports the
design choice of using the LSTM states combination as the key
matrix, indicating that long-term and short-term information is
more effectively managed when encoded in the key matrix.

E. Abalation Study and Efficiency Analysis

1) Ablation Study: The ablation study conducted on the
ACDC dataset, as shown in Table III, provides a detailed
analysis of the LSTMSA module’s individual components
and their impact on segmentation performance. The results
indicate that the LSTMSA module’s superior performance is
contingent on the strategic integration of both SA and LSTM
components. Specifically, the ablation study reveals that the
exclusion of either SA or LSTM components results in a
noticeable decline in segmentation performance, underscoring
the critical role played by both components in enhancing the
network’s segmentation accuracy. Furthermore, the ablation
study highlights the importance of cross attention mechanism
(including selection of QKV, only using input data and only
using hidden states) and dynamic positional encoding in the
LSTMSA module, with their exclusion leading to a reduction
in segmentation performance.

2) Efficiency Analysis: Table IV presents an efficiency anal-
ysis on the Synapse, ISIC2018, ACDC, and CVC-ClinicDB
datasets, comparing the computational costs of our LSTMSA
module and separated SA and LSTM components within base-
line models, using a tensor with shape of (1, 3, 256, 256). The
results indicate that the LSTMSA module exhibits a marginal
increase compared to the baseline models. However, it does
not introduce additional overhead compared to separated SA
and LSTM, and the rate of increase in parameters, FLOPs,
and inference time is smaller, indicating that the LSTMSA
module is a lightweight and efficient solution for medical
image segmentation tasks.

3) Input Perturbation Analysis: Table V shows the input
perturbation analysis results on the ACDC datasets, assessing
the LSTMSA module’s robustness to noise. The module
demonstrates superior robustness compared to baseline mod-
els, with minimal performance decline under varying noise
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TABLE IV
EFFICIENCY COMPARISONS BETWEEN OUR PROPOSED MODULE AND

SEPARATED SA AND LSTM WITHIN SOTA METHOD ON EACH DATASET.
THE RESULTS ARE OBTAINED BY AVERAGING THE OUTCOMES OF 10

EXPERIMENT RUNS AND THE RATE OF INCREASE IS ALSO CALCULATED.
PARAMS DENOTES THE NUMBER OF PARAMETERS, FLOPS DENOTES THE

NUMBER OF FLOATING-POINT OPERATIONS, AND TIME DENOTES THE
INFERENCE TIME TAKEN FOR GPU INFERENCE.

Matrices Dataset Baseline Separated δ LSTMSA δ

Params (M)

Synapse 146.51 +0.75% +0.56%
ISIC2018 2.59 +4.63% +4.15%
ACDC 49.31 +0.41% +1.65%
CVC-ClinicDB 3.53 +3.11% +8.97%

Flops (G)

Synapse 28.32 +3.95% +0.28%
ISIC2018 15.88 +6.92% +1.50%
ACDC 14.35 +5.57% +0.56%
CVC-ClinicDB 0.48 +41.67% +34.29%

Time (ms)

Synapse 45.41 +2.42% +1.44%
ISIC2018 10.95 +9.31% +5.51%
ACDC 33.91 +3.83% +0.56%
CVC-ClinicDB 5.19 +13.29% +10.05%

TABLE V
INPUT PERTURBATION ANALYSIS ON ACDC DATASET. DICE SCORES (%)
AND HD95 ARE REPORTED. LOW AND MODERATE NOISE IS ADDED USING

GUASSIAN NOISE WITH σ = 0.1 AND σ = 0.2, RESPECTIVELY. STRONG
NOISE IS ADDED USING RANDOM CONTRAST, SATURATION, HUE AND

BRIGHTNESS TRANSFORMATIONS.

Method Noise level DICE δ HD95 δ
MT-UNet [9] low -4.22 +0.81
LSTMSA (Ours) low -2.63 +0.29
MT-UNet [9] moderate -9.41 +2.22
LSTMSA (Ours) moderate -6.98 +0.90
MT-UNet [9] strong -77.89 +27.22
LSTMSA (Ours) strong -72.45 +20.11

levels, indicating its ability to maintain segmentation accuracy
in the presence of noise.

4) Effect on Different Baselines: To assess the LSTMSA
module’s universality, Table VI compares performance across
different baseline networks with and without the LSTMSA
module. It is worth noting that for some models without
publicly available code, we reimplement the corresponding
models according to the respective papers. The results demon-
strate that our module consistently improves segmentation
accuracy across datasets, confirming its versatility. Moreover,
we adopt significance testing to evaluate the improvements in
segmentation performance achieved by the LSTMSA module
across different datasets and baseline models. The paired t-test
is chosen due to the nature of the experimental setup, where
each dataset is evaluated under two different conditions before
and after the application of the proposed module. The results
show that the improvements in segmentation performance are
statistically significant, indicating the robustness and reliability
of the LSTMSA module.

V. CONCLUSION

In this paper, we present an innovative deep learning model,
SA-embedded LSTM (LSTMSA), designed to address critical
challenges in conventional contextual models in medical image
segmentation. By seamlessly integrating the LSTM and SA
mechanism, LSTMSA achieves a harmonious balance between
global and local context modeling, resulting in enhanced

TABLE VI
BASELINE COMPARISON AND STATISTICAL SIGNIFICANCE TESTING

RESULTS ACROSS DATASETS AND BASELINES. DICE SCORES (%) ARE
REPORTED. ↑ INDICATES AN INCREASE IN DICE OF LESS THAN 1% AND ⇑

INDICATES AN INCREASE IN DICE OF GREATER THAN 1%. A P-VALUE
LESS THAN 0.05 INDICATES STATISTICAL SIGNIFICANCE.

Dataset Method DICE δ Significance

Synapse

TransUNet [4] 78.89 ⇑
t-statistic: 3.3665
p-value: 0.0281
Significant: Yes

MT-UNet [9] 78.41 ↑
MISSFormer [39] 80.49 ↑
DAEFormer [49] 82.52 ↑
MERIT [10] 84.85 ↑

ISIC2018

UNet [19] 88.37 ↑
t-statistic: 19.5116
p-value: 0.0004
Significant: Yes

DWUNet [35] 88.56 ⇑
ResUNet [36] 89.01 ⇑
UNet++ [38] 89.14 ↑
DCSAU-Net [33] 91.42 ⇑

ACDC

MISSFormer [39] 90.75 ⇑
t-statistic: 3.7350
p-value: 0.0202
Significant: Yes

TransUNet [4] 91.64 ⇑
DAEFormer [49] 91.82 ⇑
MT-UNet [9] 92.86 ⇑
MERIT [10] 92.45 ↑

CVC-ClinicDB

FCBFormer [14] 95.63 ⇑
t-statistic: 6.0501
p-value: 0.0037
Significant: Yes

SSFormer-S [44] 94.10 ⇑
HarDNet-DFUS [45] 95.65 ⇑
FANet [46] 95.88 ⇑
ESFPNet [34] 96.11 ⇑

segmentation performance. Our research has demonstrated the
effectiveness of LSTMSA in mitigating the issues of premature
loss convergence and rank collapse, which have posed sub-
stantial impediments to pure SA networks. Through extensive
evaluations on various medical image datasets, LSTMSA con-
sistently outperforms existing methodologies, and its universal
applicability across diverse baseline architectures has been
validated.

Despite these significant achievements, it is essential to ac-
knowledge a limitation in the current approach. The fusion of
LSTM and SA in LSTMSA does not involve parallel training,
leading to a sacrifice in training speed. To further enhance
the practicality and efficiency of LSTMSA, we will explore
strategies for incorporating parallel training structures, thereby
optimizing both training time and segmentation performance.

In conclusion, the introduction of LSTMSA represents a
noteworthy advancement in the field of medical image segmen-
tation. Our proposed model not only resolves long-standing
challenges but also sets the stage for future improvements that
promise to revolutionize the domain.
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