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Abstract— Accurate and automatic segmentation of medical
images plays an essential role in clinical diagnosis and analysis.
It has been established that integrating contextual relationships
substantially enhances the representational ability of neural
networks. Conventionally, Long Short-Term Memory (LSTM)
and Self-Attention (SA) mechanisms have been recognized for
their proficiency in capturing global dependencies within data.
However, these mechanisms have typically been viewed as distinct
modules without a direct linkage. This paper presents the
integration of LSTM design with SA sparse coding as a key
innovation. It uses linear combinations of LSTM states for
SA’s query, key, and value (QKV) matrices to leverage LSTM’s
capability for state compression and historical data retention.
This approach aims to rectify the shortcomings of conventional
sparse coding methods that overlook temporal information,
thereby enhancing SA’s ability to do sparse coding and capture
global dependencies. Building upon this premise, we introduce
two innovative modules that weave the SA matrix into the
LSTM state design in distinct manners, enabling LSTM to more
adeptly model global dependencies and meld seamlessly with SA
without accruing extra computational demands. Both modules
are separately embedded into the U-shaped convolutional neural
network architecture for handling both 2D and 3D medical
images. Experimental evaluations on downstream medical image
segmentation tasks reveal that our proposed modules not only
excel on four extensively utilized datasets across various baselines
but also enhance prediction accuracy, even on baselines that have
already incorporated contextual modules. Code is available at
https://github.com/yeshunlong/SALSTM.

Index Terms— Sparse coding, contextual module, LSTM, self-
attention, medical image segmentation.

I. INTRODUCTION

EDICAL image segmentation is a critical component
in the domain of medical imaging, serving as a foun-
dational step for extracting quantitative measurements and
facilitating diagnostic and therapeutic procedures [1], [2], [3].
The advent of deep learning has ushered in a new era for this
task [4], [5], [6], with numerous researchers leveraging neural
networks to achieve state-of-the-art (SOTA) performance on a
wide range of medical image segmentation datasets [7], [8],
[9], [10].
Sparse coding, a technique aimed at representing signals
as sparse linear combinations of basis elements, has been
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particularly influential in interpreting medical images where
the underlying structures are inherently sparse [11], [12].
The primary advantage of sparse coding in medical image
segmentation lies in its ability to isolate and emphasize the
most relevant features of an image, thereby reducing noise and
improving the clarity of important anatomical structures [13],
[14], [15], [16]. This sparsity-driven approach aligns well with
the characteristics of medical images, which often contain
distinct and sparse regions corresponding to different tissues or
pathological areas [17], [18], [19], [20]. Moreover, reducing
sparsity throughout the layers of a deep network is crucial
for effective image segmentation [21]. In each layer, sparse
representations help to ensure that only the most salient
features are propagated, thus enhancing the network’s ability
to distinguish between different regions of the image [22]. This
layer-wise sparsity can lead to more precise boundary delin-
eation and better segmentation outcomes overall. For instance,
by enforcing sparsity constraints, networks can achieve higher
robustness against overfitting, which is particularly benefi-
cial given the often limited availability of annotated medical
images. Additionally, sparse coding can facilitate more effi-
cient computation, as fewer active neurons lead to reduced
computational overhead, which is essential for deploying deep
learning models in clinical settings with limited resources [23].

Among the various algorithms developed for sparse coding,
the Iterative Shrinkage-Thresholding Algorithm (ISTA) [24]
and its learned counterpart, Learned ISTA (LISTA) [25], stand
out for their effectiveness. ISTA iteratively refines its repre-
sentations to achieve sparsity [11], while LISTA transforms
ISTA into a Recurrent Neural Network (RNN) architecture,
enhancing computation of sparse codes by treating the ISTA
process as a sequence of neural layers. However, a significant
limitation of both algorithms is the lack of consideration
for incorporating historical information into the update rules.
This oversight restricts their capacity to leverage temporal or
sequential dependencies within data, which can be crucial for
understanding the complex structures and anisotropic slices
present in medical images [26].

Meanwhile, the Self-Attention (SA) [27] mechanism has
an underlying equivalence with sparse coding through its
handling of input sequences [21]. It computes output repre-
sentations as weighted sums of input elements, which can
be viewed as a form of sparse coding, where the attention
mechanism selectively focuses on relevant parts of the input,
effectively encoding it into a sparse representation [21] by
using linear projection. Such an approach has shown promise
in capturing the intricate dependencies characteristic of medi-
cal images, thereby presenting a viable strategy for enhancing
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medical image segmentation through the lens of sparse coding
principles.

As depicted in Fig. 1 (a), our design intertwines the
similar frameworks and migratable interpretability [28] of
Long Short-Term Memory (LSTM) [29] with the principles
of SA sparse coding. By leveraging the intrinsic state com-
pression and historical data retention capabilities of LSTM
units, we amplify the SA mechanism’s ability in sparse
coding and global dependency modeling. Fig. 1 (b) further
demonstrates the improvement of our method compared to
network based solely on SA. We measure the sparsity of
the output representation after each layer using the L norm,
and the results indicate several advantages of our approach.
Firstly, our method successfully inherits the original model’s
ability in sparsification. Secondly, our method exhibits a faster
decreasment in sparsity when the network has fewer initial
layers. Thirdly, as the network deepens, our method ultimately
achieves lower levels of sparsity representation.

In the realm of our design, we introduce two variants,
namely SA coupled LSTM (SA-LSTM) and LSTM coupled
SA (LSTM-SA), and both modules are tailored to optimally
process distinct data dimensionalities with inherent feature
densities. We believe a key observation is that SA-LSTM
explores the efficacy of employing linear combinations of
LSTM states as query, key, and value (QKV) matrices, a tech-
nique that shows exceptional promise with 2D data due to
its denser feature. This adaptation enables a more granular
and rich extraction of contextual relationships within the
2D image, harnessing the depth of LSTM’s sequential data
processing strengths to complement the broad reach of SA in
global dependency mapping. Conversely, in the context of 3D
data, where anisotropy between slices presents a challenge to
maintaining contextual integrity, a direct application of LSTM
states as QKV matrices in SA-LSTM can inadvertently lead
to partial context information loss. To counteract this, LSTM-
SA employs a strategy where the acceptance degree of the
QKV matrices in SA is determined by a combination of
LSTM states. The multiplication with the coefficient matrices
in this design guarantees the preservation of state integrity and
effectiveness, circumventing potential adverse effects without
the incorporation of extraneous data.

We perform comprehensive quantitative experiments on four
widely used medical image segmentation datasets to validate
the effectiveness of our proposed modules. The experiments
encompass both 2D and 3D inputs, and the results demonstrate
that our approach outperforms SOTA methods on all the
datasets. Furthermore, our modules exhibit better performance
across a range of baseline models, showcasing their robustness
and adaptability in enhancing medical image segmentation
accuracy.

This paper’s contributions are summarized as follows:

o Building upon widely adopted LSTM and SA designs,
we integrate these methodologies to enhance their com-
bined capabilities in sparse coding principles and global
dependency modeling, offering a novel integration of
LSTM states with SA’s QKV matrices for improved
context understanding.
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« We introduce two tailored modules, optimized for 2D and
3D data, respectively, which not only utilize the unique
properties of LSTM and SA but also ensure compatibility
with existing models. This design provides a unified
framework for medical image segmentation, facilitating
seamless integration into various applications.

o Validation across diverse medical image segmenta-
tion datasets demonstrates our approach’s effectiveness,
achieving SOTA performance and showing significant
improvements over twenty baseline models across four
datasets. These results underscore the practical applica-
bility and generalizability of our method across different
dimensionalities of data.

II. BACKGROUND

In this section, we provide an overview of sparse coding and
its classic algorithm, as well as recent research on medical
image segmentation. We also discuss the fusion manner of
LSTM and SA in our proposed method compared to other
approaches in hybrid LSTM and SA design.

A. Sparse Coding and Its Classic Algorithm

In the domain of data representation, the quest for deriv-
ing semantic significance from data that is both noisy and
high-dimensional has led to the adoption of sparse coding
techniques [30]. Sparse coding seeks to discover a dictionary
that can sparsely represent data points, thereby revealing the
underlying structure of the data.

Given a data matrix X € R%*", the goal of sparse coding
is to learn a dictionary B € R%*% and a set of sparse codes
S € R%*" that represent the data. The optimization problem
is expressed as

min >_llxi—Bsill3 + Allsi (1)
1

with the constraint ||b;ll> <1 for j =1,...,d;.

This optimization task is conventionally tackled by alter-
nating between optimizing B and S, dealing separately with
dictionary learning and sparse approximation. By fixing S,
the dictionary learning reduces to a ridge regression problem
with a known solution. Conversely, fixing B shifts the focus
to sparse approximation, aiming to represent the input as a
sparse linear combination of the dictionary elements.

In the realm of sparse coding, ISTA plays a pivotal role
in deriving sparse representations of data. It iteratively refines
sparse codes by employing a straightforward update mecha-
nism, formulated as:

s® = shrink (s(l_l) —tVg(s®D), )\t) , ()

where s) denotes the sparse code at iteration 7, T represents a
predetermined learning rate, )\ is the regularization parameter,
Vg(s) corresponds to the gradient of the objective function
g(s) = %Hx — Bs||%, and the shrink(-, At) function applies a
hard thresholding operation to enforce sparsity.

Despite ISTA’s success in sparse coding, its applica-
tion faces significant hurdles. Primarily, ISTA employs a
non-adaptive update strategy across dimensions with a fixed
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Our motivation diagram and results. (a) Two motivations for the deep fusion of LSTM and SA: first, there is an intrinsic similarity in the computation

process of LSTM states and the QKV matrices in SA; second, using LSTM can effectively provide enhanced representations of historical information for SA
in the process of sparse coding. (b) The improvement of our method compared to network based solely on SA in the process of sparse coding.

learning rate, potentially leading to suboptimal performance
due to a lack of diversity in parameter updates. To address
these limitations, the LISTA is introduced, transforming ISTA
into a RNN architecture. LISTA accelerates the computation of
sparse codes by reinterpreting the iterative process of ISTA as
a sequence of neural network layers. This innovative approach
allows LISTA to optimize the dictionary and sparse codes
concurrently, offering significant improvements in inference
speed by bypassing the need to solve a convex optimiza-
tion problem directly. Instead, sparse codes can be rapidly
acquired through a neural network’s forward pass. However,
while LISTA marks a significant advance in computational
efficiency, it inherits a critical shortcoming from its ISTA
lineage. It does not incorporate historical information into
its update mechanisms. The fixed learning rate across itera-
tions and the absence of an adaptive updating strategy limit
LISTA’s ability to fully exploit the wealth of information
available from previous iterations [31]. This oversight con-
strains the potential of LISTA to achieve faster convergence
and enhance model performance, highlighting a critical area
for future enhancement in the evolution of sparse coding
methodologies.

Based on the observations above, we have found that the
strategy of integrating LISTA through RNN greatly enhances
the ability of sparse coding to mine sequential data. Given
the same strategy, SA-based sparse coding methods can also
further improve their ability to represent historical or neigh-
borhood data [21]. Further considering the structural similarity,
this paper focuses on how to couple SA and LSTM to enhance
their modeling capabilities.

B. Recent Research on Medical Image Segmentation

In the realm of medical image segmentation, UNet [32]
has become a foundational model due to its ability to
effectively handle the intricacies of 3D medical imaging
data through its encoder-decoder architecture. Given that
medical imaging data is often presented in a 3D slice-by-
slice format [7], researchers frequently leverage 2D or 3D
Convolutional Neural Networks (CNNs) to address segmen-
tation tasks effectively [2], [3]. In response to challenges

such as limited training data, the adoption of self-supervised
learning approaches has become increasingly prominent. The
mean teacher framework [33], which employs consistency
regularization to leverage pseudo-labels and enhance learn-
ing, exemplifies a robust strategy to mitigate data scarcity
issues [34], [35], [36]. These self-supervised models have
shown promise in improving segmentation performance by
extracting valuable insights from unlabeled data.

Moreover, many models containing contextual information
similar to LSTM and SA have been proposed in processing
medical image data [37], [38], [39]. Gu et al. [9] indicate
that general U-shaped networks may loss sight of high-level
information. Thus they utilize a context encoder to capture
more high-level information and preserve spatial information.
Feng et al. [40] concentrate on the problem of imbalanced
class and blurred boundary in medical images, and propose
a pyramidal module to fuse multi-scale context information.
Girum et al. [8] use a forward system to get the prediction
of the segmentation and integrat it into the context feedback
system to get the final segmentation.

The application of foundation models in medical image seg-
mentation has expanded with the development of approaches
tailored for specific medical challenges. Notably, the adap-
tation of the Segment Anything Model [41] (SAM) to
medical imaging has shown promising results. For instance,
the work by Liu et al. [42], building on the foundational
SAM architecture, presents a comprehensive framework for
general-purpose medical image segmentation. Additionally,
the Ma-SAM framework [43], which adapts SAM to han-
dle 3D medical images, presents a significant innovation.
By designing a modality-agnostic approach that can efficiently
process volumetric data, Ma-SAM addresses one of the key
challenges in medical image segmentation—leveraging 3D
spatial context while maintaining high segmentation accuracy.
This innovative approach stands out for its ability to gen-
eralize across different imaging modalities without the need
for extensive modality-specific adjustments. Furthermore, the
integration of SAM with other advanced techniques [44],
[45] leads to a future where foundation models are not only
powerful in generalization but also capable of incorporating
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Fig. 2. Comparison and fusion manner of LSTM and SA. (a) Direct fusion
of LSTM and SA, using LSTM and SA separately. (b) Deep fusion of LSTM
and SA, which fuses the characteristics of LSTM and SA in each cell.

sophisticated context-aware mechanisms to further improve
segmentation outcomes in complex medical imaging scenarios.

C. Fusion Manner of LSTM and SA

The most common way to fuse LSTM and SA for medical
image segmentation is by stacking them together [38], [46],
[47], [48], [49], [50]. Fig. 2 (a) illustrates an architecture
where a multi-layer LSTM module is followed by a SA
module. The number of layers and hidden state sizes can be
adjusted to optimize performance for a specific task. Deeper
models with larger hidden states generally perform better, but
they also come with increased computational cost. While this
combination method can enhance the model’s representation
ability to some extent, it does not fully consider the inherent
differences and connections between LSTM and SA. As a
result, it often leads to additional computational overhead and
only minor improvements in accuracy [39].

On the other hand, our approach aims to fully fuse LSTM
and SA. As shown in Fig. 2 (b), each layer of the module
incorporates both LSTM and SA mechanisms. The outputs of
these modules are then combined by using a gating mechanism
before being fed into the subsequent feed forward neural
network. The key distinction between these two approaches
is that direct stacking uses separate layers for LSTM and SA,
whereas our strategy combines them within each layer to better
capture long-term dependencies.

It is worth noting that there are some related works using
hybrid LSTM and SA, such as TRANS-BLSTM [37], SAST-
LSTM [51], SwinLSTM [38] and RWKYV [39], which appear
similar to our approach. However, they either ignore the
detailed meaning of states in LSTM and SA or primarily focus
on introducing a completely different attention mechanism.
In contrast, sparse coding is a key factor in our method,
which is overlooked by the above methods. We build our
module on the basis of this theory, which makes our method
more interpretable and explainable in the process of medical
image segmentation compared to other methods. Meanwhile,
our proposed method is more like a plugin that can enhance
most baseline models without constructing an entirely new
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module. This approach provides more flexibility in improving
model performance for medical image segmentation tasks.
In addition, the unique feature extraction capability involved
in our method is also the main difference between its prompt
or adapter fine-tuning approach to the foundation model [41],
[42].

III. METHOD

In this section, we present our proposed modules, SA-LSTM
and LSTM-SA, designed to enhance the sparse coding capa-
bilities of LSTM and SA mechanisms. We detail the structural
integration of LSTM and SA, elucidating the rationale behind
our design choices and the technical underpinnings of our
approach.

A. Rethinking the Combination of LSTM and SA for Sparse
Coding

Unlike conventional methods, LSTM possesses a stronger
memory capability, allowing it to effectively preserve and
utilize past input information over extended sequences. This
characteristic is particularly beneficial for tasks that rely on
the memory of previous inputs, such as medical image seg-
mentation. In such tasks, certain features within the images
may become more prominent or complex as the sequence
progresses, for example, when analyzing a series of image
slices. Conventional methods may focus solely on the features
of the current image, failing to fully leverage the information
from preceding images, which can result in an incomplete
understanding of the image structure. In contrast, LSTM can
remember and process this historical information, enabling it
to make more accurate segmentation decisions, even when
certain features are less apparent in the current image by
recalling and utilizing information from previous inputs. This
characteristic help LSTM remember and utilize historical data
over long sequences, making them more invaluable for tasks
requiring memory of past inputs compared with conventional
sparse coding algorithm. The incorporation of LSTM states
into the SA mechanism’s QKV matrices can be construed as
a method to harness this memory capability, ensuring that the
SA mechanism does not solely rely on the immediate input
but also draws upon a rich, historically informed context.

The SA mechanism, the key part of the transformer [27]
architecture, excels in modeling interactions across entire
sequences, offering a means to directly compute relationships
between distant elements on the equivalent sparse coding [21].
By integrating LSTM state information into the SA frame-
work, the model effectively bridges the gap between local
coherence and global contextual understanding. This integra-
tion allows the SA to dynamically adjust its focus, not just
based on the static input sequence, but also influenced by the
evolving contextual information encoded in the LSTM states.

Incorporating the intrinsic properties of LSTM units with
the SA mechanism, as illustrated in Fig. 3, offers a novel
approach to enhancing the model’s ability to capture global
dependencies within data. This integration aims to leverage
the LSTM’s inherent capabilities in compressing state infor-
mation and its facility for retaining historical context, thereby
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augmenting the SA mechanism’s capacity for global depen-
dency modeling and sparse coding. We adopt the proposition
of employing linear combinations of LSTM states as QKV
matrices in SA to amalgamate the LSTM’s local information
capture with a more globally-aware representation strategy.

B. SA-LSTM

As show in Fig. 3 (a), in the pursuit of enhancing the
capabilities of SA mechanism, particularly with a focus on
achieving a more nuanced understanding and representation
of sequential data, we integrate LSTM state information into
the computation of query matrix, key matrix, and value matrix
deeply. The proposed SA-LSTM, as delineated in Eq. 3,
leveraging various combinations of LSTM gate activations and
cell states to enrich the SA mechanism’s expressiveness and
dynamic adaptability.

Q = FQU, fi, & 01, ¢, hy)
K = FK(;, fi, 801, ¢, hy) 3)
V = FV(ll7 f19 gf’otscl‘ahl)

where i;, f:, g:, and o; represent the input, forget, inner,
and output gate activations of the LSTM unit at time
step ¢, respectively. The cell state and output state of the
LSTM unit at time step ¢ are denoted by ¢; and #h,
respectively.

The rationale behind employing specific LSTM states
to constitute the QKV matrices is rooted in the intrin-
sic properties and roles of these states within the LSTM
architecture. The query matrix is conceptualized to aggre-
gate surface-level information, weaving together historical
and current inputs, analogous to the LSTM’s function of
integrating past and present through its cell state (¢;) and
forget gate (f;) [31]. This similarity underscores the choice
to link query matrix with elements akin to LSTM’s infor-
mation fusion capabilities and prevent the unbounded cell
state to propagate through the network and destabilize
learning [52].

Conversely, the key matrix is tasked with measuring the
relevance of other elements in relation to the query across both

deep and shallow feature layers, mirroring the LSTM’s gating
mechanisms (g;) and (4;) that regulate information flow. This
alignment suggests a natural coupling between key matrix and
the LSTM’s capacity to evaluate inter-element relationships
based on accumulated contextual insights.

The value matrix, pivotal in enhancing the SA mechanism’s
sparsity, is inherently associated with the LSTM’s output state
(hy) [39], serving to filter and reinforce the most salient
features while suppressing less pertinent information. This
association not only preserves but also augments the mecha-
nism’s focus on critical attributes, facilitating a more dynamic
and expressive computation of SA that is both informed by
and adaptable to the spatial and temporal dynamics inherent
in sequential data.

The proposition to utilize specific LSTM state combina-
tions for computing QKV matrices within the SA mechanism
embodies a strategic approach that leverages LSTM’s ability to
retain historical information and compress states. This hybrid
approach not only aligns structurally but also significantly
enhances the SA mechanism by offering a dynamic and
expressive method for computing attention weights. The intro-
duction of LSTM states enables the method to incorporate both
recent and historical data, allowing for fine-grained control
through distinct states. Specifically, the combination of the for-
get gate and cell state integrates past and present information,
focusing on spatiotemporal differences that emerge, thereby
guiding the SA mechanism to prioritize sequence segments
pertinent to spatial and temporal dynamics. Furthermore, the
combination of the input gate and hidden state enhances
sparsity, resulting in a more precise attention distribution.
The use of the hidden state as the value ensures that core
information is preserved, thus improving the robustness of the
attention distribution. This approach ultimately enhances the
SA’s capacity for global dependency modeling, providing a
richer, context-aware framework that dynamically integrates
both local and global insights for improved sequence repre-
sentation and processing.

The functional mappings FQ, FK, and FV are initially
considered in two distinct formulations to explore the impact
of linear versus non-linear combinations of LSTM states,
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as shown in Eq. 4.

fit+c g+ h

FQ,FK,FV = ) h
Q 5 > ‘

FQ,FK,FV = ReLU(f, *c;), ReLU (g * h;), h;
“4)

The first set of functions implies a linear combination
approach, which is adopted finally, blending the LSTM states
through straightforward arithmetic operations. The second set
introduces non-linear transformations, facilitated by the ReLU
activation function, thus embedding an additional layer of
complexity and potential for capturing intricate relationships
within the data. More detailed experimental evaluations on
different combination strategies can be found in Section IV.

C. LSTM-SA

In the evolving landscape of sequence modeling, particularly
when transitioning from 2D to 3D data, the intricacies of
capturing contextual information become increasingly com-
plex and challenging for SA-LSTM module proposed in the
previous section. As show in Fig. 3 (b), the LSTM-SA
module addresses these challenges by modeling the anisotropy
present in layers of 3D data. The proposed formulation for the
LSTM-SA module is presented in Eq. 5.

Wo = FQC(y, ft. & 01,1y hy)
Wk = FK (i, fi, &, 01, Ct, hy)
Wy = FV (i, flv 8t, 01, Ct, ht)

&)
Q=WoOh
K =Wk Oh;
V=WyQOh

SA-LSTM employs linear combinations of LSTM states
as QKV matrices and shows superior performance on 2D
data due to the dense nature of its features, while LSTM-SA
modifies this integration to adapt with 3D data. This distinction
arises from the observation that 3D data exhibits slice-to-slice
anisotropy, which can lead to a loss of contextual information
when relying solely on linear combinations of LSTM states
for QKV in SA-LSTM.

LSTM-SA adapts to this challenge by using the linear
combinations of LSTM states to influence the coefficients of
Wg, Wk, and Wy, rather than directly constituting QKV. This
method combines the output state of the previous layer into
the QKV matrices through element-wise multiplication, thus
ensuring the preservation of context and mitigating potential
information loss. The multiplication with Wo, Wk, and Wy
guarantees the integrity and effectiveness of the states, without
being adversely affected or introducing extraneous informa-
tion.

This application of LSTM states in LSTM-SA versus SA-
LSTM exemplifies a tailored approach to sequence modeling
that respects the unique characteristics of the data dimen-
sionality. By integrating LSTM states in a manner that caters
specifically to the challenges presented by 3D data, LSTM-SA
offers a robust solution for preserving contextual information
and ensuring the model’s responsiveness to the inherent com-
plexities of the data structure, thereby enhancing the model’s
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overall performance and applicability across diverse data sce-
narios. More detailed experimental scenario evaluations on
SA-LSTM and LSTM-SA can be found in Section IV.

IV. EXPERIMENTS AND RESULTS

In this section, we present the experimental setup, imple-
mentation details, and results of our proposed modules on
various medical image segmentation datasets. We evaluate
the performance of our modules on both 2D and 3D inputs,
comparing them against SOTA methods to demonstrate their
effectiveness in enhancing segmentation accuracy. Moreover,
we conduct several ancillary experiments to discuss the model
structure or to demonstrate that the model possesses sufficient
robustness and generalisability.

A. Implementation Details

In the case of 2D input, we evaluate the performance of our
proposed modules on the following datasets:

o Synapse dataset: This dataset includes 30 abdominal CT
scans, each with 85 to 198 slices of 512 x 512 resolution,
targeting segmentation of 8 organs namely the aorta,
gallbladder (GB), spleen (SP), left kidney (KL), right
kidney (KR), liver, pancreas (PC), and stomach (SM).!

o ISIC2018 dataset: This dataset comprises skin lesion
images, including both dermoscopic and clinical images.
The main task is to develop and evaluate automatic
segmentation methods for skin lesions in these images
and has been introduced in works by Codella et al. [53]
and Tschandl et al. [54].

For the 3D input scenario, we conduct experiments on the
following datasets:

o« ACDC dataset: This dataset involves the segmentation
task of the heart, and consists of 100 cardiac MRI scans
for segmenting three cardiac structures: right ventricle
(RV), left ventricle (LV), and myocardium (Myo).2

e« CVC-ClinicDB dataset: This dataset contains a col-
lection of high-definition colonoscopy images captured
during clinical procedures and has been used for com-
paring automatic segmentation methods in the work by
Bernal et al. [55].

We evaluate the performance of our proposed modules on
these datasets using the DICE score and Hausdorff distance
95% (HD9S5) together as the evaluation metrics. The DICE
score measures the overlap between the predicted and ground
truth masks, while the Hausdorff distance quantifies the max-
imum distance between the predicted and ground truth masks,
providing a comprehensive measure of both segmentation
quality and edge accuracy. The formula for the DICE score is
given by: DICE = Z‘Q‘K%‘, where X and Y represent the
predicted and ground truth masks, respectively. The HD95
is computed as the 95th percentile of the Hausdorff distance
between the predicted and ground truth masks.

In all of the aforementioned datasets, we incorporate the
U-shaped network with our proposed modules as the baseline

1 https://www.synapse.org/#!Synapse:syn3193805/wiki/217789
2https://Www.creatis.insa—lyon.fr/Challenge/acdc/
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model (Fig. 4). It is important to note that we only add the pro-
posed modules to the baseline model’s structure without any
other modifications in the original network architecture. Addi-
tionally, we adopt the same training strategies as the baseline
model, meaning that our proposed modules can be seamlessly
integrated into existing network structures to enhance model
performance, without requiring additional training strategies
or hyperparameter tuning.

Since we conduct experiments with twenty baselines across
the four datasets, we will present the results of the best
baseline model on each dataset in Subsection IV-C and
Subsection IV-D. The results of the other baseline models
can be found in the subsequent experiments. The specific
baseline models used on the Synapse, ISIC2018, ACDC, and
CVC-ClinicDB datasets are MERIT [56], DCSAU-Net [57],
MT-UNet [58], and ESFPNet [59], respectively. It is crucial
to highlight that the compared methods in our experiments
are the most advanced ones for each dataset in recent years.
Additionally, we incorporate an extra comparison with a
classic foundation model MedSAM [42], which is currently
one of the most widely used foundation models in medi-
cal image segmentation, to provide a more comprehensive
evaluation.

B. Module Embbeding Strategies

To test our module’s effectiveness on 2D and 3D medical
images, we integrated it into various positions within a U-
shaped network. For 2D inputs, as illustrated in Fig. 4 (a),
the module is embedded in parallel to the encoder, between
encoder and decoder, between the skip connection and upsam-
pling layer, and post-decoder. For 3D inputs, the module
is positioned between the encoder and decoder, and three
adjacent slices are input at a time, which are processed by
three 2D encoders separately and then fused using the new
module before being fed into the 2D decoder to obtain the
final inference result, as shown in Fig. 4 (b). We assess
the performance of these different embedding strategies in
subsequent experiments.
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C. Results on 2D Inputs

Table I demonstrates that both our modules, LSTM-SA and
SA-LSTM, achieve SOTA results on the Synapse multi-organ
dataset and the ISIC2018 segmentation dataset. In particu-
lar, SA-LSTM outperforms LSTM-SA across most metrics,
indicating its superior performance on 2D data. For example,
on the Synapse dataset, SA-LSTM achieves a DICE score of
85.13% and an HDO95 of 13.25, compared to the baseline
model MERIT, which achieves a DICE score of 84.22%
and an HD95 of 16.51. Similarly, on the ISIC2018 dataset,
LSTM-SA achieves a DICE score of 91.08% and an HD95 of
2.53, outperforming the baseline model DCSAU-Net, which
achieves a DICE score of 90.41% and an HDO95 of 2.21.
In addition, both our modules exhibit better performance
compared to the foundation model MedSAM, highlighting the
effectiveness of our modules in dealing with specific medical
imaging challenges.

Comparing our modules with other SOTA methods in the
table, we can see that both LSTM-SA and SA-LSTM con-
sistently outperform the baselines and many other methods
across various organs and structures. Such as the aorta (88.93%
vs. 88.38%), gallbladder (75.87% vs. 73.48%), liver (95.57%
vs. 95.06%), and spleen (92.02% vs. 91.21%) on the Synapse
dataset. This demonstrates the effectiveness of our modules in
enhancing segmentation accuracy and improving the model’s
ability to capture detailed information from input images.

The visual analysis shown in Fig. 5 further illustrates the
effectiveness of our modules in dealing with various small
targets, such as the gallbladder, spleen, and pancreas. These
targets are accurately segmented, highlighting the modules’
proficiency in capturing and utilizing contextual information
from input images. This enhancement in segmentation perfor-
mance is crucial in medical imaging applications where the
precise delineation of such structures is essential for diagnosis
and treatment planning.

D. Results on 3D Inputs

Table II presents the segmentation results of our modules on
the ACDC and CVC-ClinicDB datasets, where they achieve
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TABLE I

QUANTITATIVE RESULTS ON SYNAPSE MULTI-ORGAN DATASET AND ISIC2018 SEGMENTATION DATASET. DICE SCORES (%), HD95 ARE REPORTED.
THE BEST RESULTS ARE IN BOLD. THE SECOND BEST RESULTS ARE UNDERLINED. » DENOTES HIGHER VALUES INDICATING BETTER RESULTS,
J DENOTES LOWER VALUES INDICATING BETTER RESULTS. BASELINES ARE STARRED

Synapse ISIC2018
Method DICE 1+ | HD95 | | Aorta | GB KL KR Liver | PC SP SM Method DICE 1 | HD95 |
UNet [32] 70.11 44.69 84.00 | 56.70 | 72.41 62.64 | 8698 | 4873 | 8148 | 67.96 | UNet [32] 87.41 4.03
TransUNet [60] 77.48 31.69 87.23 | 63.13 | 81.87 | 77.02 | 94.08 | 55.86 | 85.08 | 75.62 | DWUNet [61] 87.47 4.55
MT-UNet [58] 78.59 26.59 87.92 | 6499 | 81.47 | 77.29 | 93.06 | 59.46 | 87.75 | 76.81 ResUNet [62] 87.91 3.49
SwinUNet [63] 79.13 21.55 85.47 | 66.53 | 83.28 | 79.61 9429 | 56.58 | 90.66 | 76.60 | UNet++ [64] 88.32 3.83
MISSFormer [65] 81.96 18.20 86.99 | 68.65 | 85.21 82.00 | 94.41 65.67 | 91.92 | 80.81 R2UNet [66] 90.13 3.62
TransCASCADE [67] | 82.68 17.34 86.63 | 68.48 | 87.66 | 84.56 | 94.43 | 6533 | 90.79 | 83.52 | DCSAU-Net [57]* | 90.41 221
MERIT [56]* 84.22 16.51 88.38 | 73.48 | 87.21 84.31 95.06 | 69.97 | 91.21 84.15 | MSCA-Net [68] 90.52 2.79
MedSAM [42] 81.88 19.40 87.77 | 69.11 80.45 | 79.95 | 94.80 | 72.17 | 88.72 | 82.06 | MedSAM [42] 87.30 432
SA-LSTM (Ours) 85.13 13.25 88.93 | 7587 | 87.47 | 84.06 | 95.57 | 71.52 | 91.61 8598 | SA-LSTM (Ours) 91.17 2.02
LSTM-SA (Ours) 84.50 13.62 88.24 | 7497 | 8845 | 8547 | 9541 67.23 | 92.02 | 84.21 LSTM-SA (Ours) 91.08 2.53

aorta

gallbladder

left kidney
|

right kidney
|
liver
|

pancreas

|

spleen

stomach

(a) Ground Truth

(b) MERIT (baseline)  (c) SA-LSTM (d) LSTM-SA

(e) Input oflSlCZUIS (f) Ground Truth (g) DCSAU-Net (baseline) (h) SA-LSTM

(i) LSTM-SA

Fig. 5. Visualization results on the Synapse and ISIC2018 dataset. (a) Ground truths of Synapse. (b)-(d) Segmentation results obtained by MERIT (baseline),
SA-LSTM and LSTM-SA on Synapse, respectively. (e) and (f) Original images and ground truths of ISIC2018. (g)-(i) Segmentation results obtained by
DCSAU-Net (baseline), SA-LSTM and LSTM-SA on ISIC2018, respectively. The red rectangular box indicates the region that have visible improvements

between the baseline and our proposed modules.

TABLE I

QUANTITATIVE RESULTS ON ACDC AND CVC-CLINICDB DATASET. DICE SCORES (%) AND HD95 ARE REPORTED. THE BEST RESULTS ARE IN BOLD.
THE SECOND BEST RESULTS ARE UNDERLINED. 1 DENOTES HIGHER VALUES INDICATING BETTER RESULTS, | DENOTES LOWER VALUES
INDICATING BETTER RESULTS. BASELINES ARE STARRED

ACDC CVC-ClinicDB

Method DICE 1 | HD9 | | RV Myo | LV Method DICE 1 | HD95 |
TransUNet [60] 39.71 2.54 33.86 | 84.53 | 95.73 | ColonSegNet [69] 33.62 136
SwinUNet [63] 90.00 4.52 88.55 | 85.62 | 95.83 | FCBFormer [70] 92.53 321
MT-UNet [58]* 90.43 2.23 86.64 | 89.04 | 95.62 | SSFormer-S [71] 92.68 1.45
MISSFormer [65] 90.86 2.13 89.55 | 88.04 | 94.99 | HarDNet-DFUS [72] | 93.32 1.29
PVT-CASCADE [67] | 91.46 1.09 88.9 | 89.97 | 9550 | FANet [73] 93.55 1.15
TransCASCADE [67] | 91.63 1.08 89.14 | 90.25 | 9550 | TGANet [74] 94.57 147
MERIT [56] 92.32 1.08 90.87 | 90.00 | 96.08 | SSFormer-L [71] 94.72 0.73
FCT [75] 92.84 5.29 92.02 | 90.61 | 95.89 | ESFPNet [59]* 94.90 121
MedSAM [42] 92.30 1.22 91.37 | 90.14 | 95.39 | MedSAM [42] 94.50 1.53
SA-LSTM (Ours) 93.06 1.05 91.67 | 90.90 | 96.60 | SA-LSTM (Ours) 96.03 0.48
LSTM-SA (Ours) 93.08 1.03 92.05 | 90.69 | 96.52 | LSTM-SA (Ours) 96.35 0.41

SOTA performance, notably improving the segmentation of
target structures. Compared to the baseline models, MT-UNet
and ESFPNet and foundational model MedSAM, our modules
show significant improvements across all metrics on the ACDC
dataset, with an improvement of approximately 3%. This

confirms the efficacy of our modules in boosting segmentation
accuracy and enhancing global dependency modeling.
Furthermore, the comparison between LSTM-SA and SA-
LSTM reveals that LSTM-SA is more suitable for processing
3D data, as it outperforms SA-LSTM on most metrics. This
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Fig. 6. 3D Visualization results on the ACDC dataset. ED is End Diastolic,
and ES is End Systolic.

(a) Ground Truth

(d) LSTM-SA

(b) ESFPNet (baseline) (c) SA-LSTM

Fig. 7. 2D Visualization results on the CVC-ClinicDB dataset. (a) Ground
Truth. (b) ESFPNet (baseline). (c¢) SA-LSTM. (d) LSTM-SA. The red rect-
angular box indicates the zoomed-in region.

indicates that LSTM-SA has superior performance in capturing
spatial dependencies and context information in volumetric
data, making it more adept at handling 3D medical imaging
tasks.

Visual analysis, as shown in Fig. 6 and Fig. 7, the model
excels in segmenting detailed areas like the valve regions,
ventricle tops, and polyp outlines. This precision is attributed
to our modules’ enhanced ability to capture and utilize input
information effectively, leading to improved segmentation
accuracy, especially in areas with sparse or intricate structures.

E. Efficiency Analysis and Ablation Studies

1) Computational Cost Analysis: Table III provides an
assessment of the efficiency of our proposed modules in repre-
senting global features on the Synapse dataset. The comparison
involves evaluating the parameters, FLOPs, and inference time
of the baseline models and the models with our proposed
modules by using a tensor of size Z € RIX3%256x256 55 inpuyt.
Notably, our proposed modules maintain a lightweight profile
in terms of parameters, FLOPs, and inference time, with a
minimal increase in computational cost. This demonstrates
the efficiency of our proposed modules in capturing global
dependencies without introducing significant computational
overhead. In comparison to the approach of separate SA and
LSTM structures, our proposed module does not introduce any
additional spatio-temporal cost during combination.

2) Effectiveness of Combination Strategies: Table IV shows
the results of the ablation experiment performed on the ACDC
dataset. The outcomes demonstrate that when SA or LSTM is
used independently or separately, satisfactory results are not
achieved. This finding can be attributed to the fact that neither
method alone can effectively represent global dependencies,
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resulting in suboptimal segmentation performance. However,
when the two methods are combined and deeply integrated as
the proposed modules (SA-LSTM and LSTM-SA), the results
are significantly improved. This highlights the complementary
nature of SA and LSTM, indicating that both methods con-
tribute unique strengths to the model. Meanwhile, the ablation
study on the combination strategies reveals that the linear com-
bination of LSTM states for QKV computation in SA-LSTM
and LSTM-SA both outperform the non-linear combination.
This result underscores the importance of leveraging the
inherent properties of LSTM states to enhance the model’s
ability to capture global dependencies effectively. The linear
combination strategy in LSTM-SA enables the model to lever-
age the LSTM states’ historical information retention and state
compression capabilities, resulting in improved segmentation
performance. Analyzing the impact of these combinations on
the sparse coding process reveals that non-linear combinations
with activation functions elevate the optimization challenge
due to the introduction of non-linearity and the potential for
creating more complex decision boundaries, while the linear
combination alone already affords substantial expressiveness.

3) Comparison of Module Embbeding Strategies: We com-
pare different embedding strategies for 2D data inputs on
the ISIC2018 dataset, as detailed in Table V. The optimal
performance occurs when the module is placed between the
encoder and decoder. Other strategies also produce satisfactory
outcomes. We analyze the reasons for these results from two
theoretical perspectives. First, from the perspective of con-
textual information integration, placing the module between
the encoder and decoder allows for the effective integration
of contextual information from deeper feature representation.
This positioning enables the model to refine its segmentation
decisions based on a more comprehensive understanding of
the image context, leading to improved segmentation accuracy.
This observation aligns with the theoretical underpinning of U-
shape networks, which aim to capture both local and global
features for accurate segmentation. Second, from the perspec-
tive of feature reuse and refinement, by inserting the module
at different stages of the U-shape network, we are essentially
altering the model’s ability to reuse and refine features. Placing
the module between the skip connection and the upsampling
layer, for instance, allow the model to refine features at a
more abstract level, potentially capturing higher-level semantic
information compared to other strategies.

F. Effect on Different Baselines and Statistical Significance
Analysis

To demonstrate the generalizability of our proposed mod-
ule, we perform supplementary experiments on 2D and 3D
inputs. We adopt five baselines for each dataset to evaluate if
integrating our module improves prediction accuracy. Notably,
some methods are not open source, so we reproduce them
from descriptions in their respective papers. The data shown
in this paper come from experiments using these independently
reproduced code.

The results from the experiments on both 2D and 3D
inputs, as shown in Table VI, Table VII, demonstrate the
generalizability of our proposed module. Across all baselines,
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TABLE III

EFFICIENCY COMPARISONS BETWEEN OUR PROPOSED MODULES WITHIN SOTA METHOD ON EACH DATASET. THE RESULTS ARE OBTAINED BY
AVERAGING THE OUTCOMES OF 10 EXPERIMENT RUNS AND THE RATE OF INCREASE IS ALSO CALCULATED. PARAMS DENOTES THE NUMBER
OF PARAMETERS, FLOPS DENOTES THE NUMBER OF FLOATING-POINT OPERATIONS, AND INFERENCE TIME DENOTES THE TIME TAKEN
FOR GPU INFERENCE

Separated SA and LSTM

SA-LSTM (Ours) | LSTM-SA (Ours)

147.62 (+0.75%)
271 (+4.63%)
49.52 (+0.41%)
3.64 (+3.11%)

147.62 (+0.75%)
2.70 (+4.24%)
49.51 (+0.40%)
3.63 (+2.83%)

147.67 (+0.79%)
2.74 (+5.79%)
49.57 (+0.52%)
3.67 (+3.97%)

29.44 (+3.95%)
16.98 (+6.92%)
15.15 (+5.57%)
0.68 (+41.67%)

20.32 (+3.54%)
16.79 (+5.73%)
15.16 (+5.64%)
0.64 (+33.33%)

20.42 (+3.84%)
17.01 (+7.11%)
15.42 (+7.46%)
0.69 (+43.75%)

Matrices Dataset Baseline
Synapse 146.51
ISIC2018 2.59
Params (M) ACDC 4931
CVC-ClinicDB | 3.53
Synapse 28.32
ISIC2018 15.88
Flops (G) ACDC 1435
CVC-ClinicDB | 0.48
Synapse 45.41
Inference Time (ms) ISIC2018 1095
’ ACDC 33.91
CVC-ClinicDB | 5.19

1651 (+2.42%)
11.97 (+9.31%)
35.21 (+3.83%)
5.88 (+13.29%)

1621 (+1.76%)
11.75 (+9.31%)
35.01 (+3.24%)
5.59 (+7.07%)

46.53 (+2.46%)
12.02 (+9.77%)
35.32 (+4.16%)
6.01 (+15.79%)

TABLE IV

ABLATION STUDY ON ACDC DATASET. DICE SCORES (%) AND HD95
ARE REPORTED. v DONATES USED, AND X DONATES NOT USED.
THE BEST RESULTS ARE IN BOLD. THE SECOND BEST RESULTS
ARE UNDERLINED. LINEAR COMB. AND NON-LINEAR COMB.
DENOTE THE LINEAR AND NON-LINEAR COMBINATION
STRATEGIES IN EQ. 4

Method SA | LSTM | DICE 1 | HD95 |
MT-UNet [58] (Baseline) X X 90.43 2.23
Only SA v X 91.17 1.77
Only LSTM X v 92.69 1.76
Separate SA and LSTM v v 92.73 1.45
SA-LSTM (Linear Comb.) v v 93.06 1.05
SA-LSTM (Non-Linear Comb.) | v v 92.59 1.11
LSTM-SA (Linear Comb.) v v 93.08 1.03
LSTM-SA (Non-Linear Comb.) | v v 92.64 1.10

TABLE V

COMPARISON STUDY ON ISIC2018 DATASET. DICE SCORES (%) AND
HD95 ARE REPORTED. THE BEST RESULTS ARE IN BOLD. STRATE-
GIES 1, 2, 3, AND 4 DENOTE EMBEDDING THE MODULE IN
PARALLEL WITH THE ENCODER, BETWEEN THE ENCODER
AND DECODER, BETWEEN THE SKIP CONNECTION AND
THE UPSAMPLING LAYER, AND AFTER THE DECODER,

RESPECTIVELY
Method DICE 1 | HD9S |
DCSAU-Net [57] (Baseline) 90.41 2.21
SA-LSTM Embbeding Using Strategy 1 | 90.52 2.54
SA-LSTM Embbeding Using Strategy 2 | 91.17 2.02
SA-LSTM Embbeding Using Strategy 3 | 90.42 2.68
SA-LSTM Embbeding Using Strategy 4 | 90.98 2.31
LSTM-SA Embbeding Using Strategy 1 | 90.60 2.53
LSTM-SA Embbeding Using Strategy 2 | 91.08 2.53
LSTM-SA Embbeding Using Strategy 3 | 90.89 2.01
LSTM-SA Embbeding Using Strategy 4 | 90.09 2.32

our model consistently exhibits significant improvements in
all evaluation metrics, highlighting the effectiveness and ver-
satility of the proposed module. The variation in improvement
observed across different baselines can be attributed to the
varying degrees to which each baseline already considers
global dependencies. Baselines that have already addressed
global dependencies effectively, such as MERIT with a cas-
caded attention decoder, DAEFormer with dual attention
guided transformer, and MISSFormer with efficient SA applied
to high-resolution feature maps, show comparatively less
improvement with the introduction of our proposed module.
On the other hand, for baselines that do not inherently consider

global dependencies, such as TransUNet with a raw ViT
model and MT-UNet with only axial attention to reduce
time complexity, the improvement achieved by our model is
substantial. This observation reinforces the significance of our
proposed module in enhancing models that lack global context
awareness.

The integration of statistical significance testing in this study
plays an important role in providing a thorough and objective
validation of the proposed modules’ performance across vari-
ous datasets. In segmentation tasks, even minor improvements
in metrics like DICE or HD95 can seem noteworthy; however,
without proper statistical analysis, it becomes challenging to
ascertain whether these improvements are genuinely mean-
ingful or merely a result of random variation. We selected
the paired t-test for our analysis, given the nature of our
experimental setup, which involves evaluating each dataset
under two different conditions: before and after the application
of the proposed modules. This test is particularly appropriate
for our context, as it considers the correlation between paired
observations, thereby offering a more nuanced assessment of
whether the performance differences are statistically signifi-
cant. In our experimental design, we calculated the t-statistic
and the corresponding p-value for each dataset, using a con-
ventional significance level of 0.05. As shown in Table VIII,
the resulting p-values are consistently below this threshold,
suggesting that the observed performance improvements are
statistically significant. This systematic approach to validation
is particularly relevant in the realm of medical image segmen-
tation, where even modest enhancements may contribute to
improved clinical outcomes. By establishing that the observed
improvements are statistically significant, this analysis not
only highlights the reliability of the proposed modules but
also supports their applicability across different datasets and
baseline models. The low p-values across all datasets indicate
that the improvements are not limited to specific datasets,
suggesting broader potential for effectiveness in various appli-
cations. This careful validation process ultimately contributes
to the credibility and relevance of the study’s findings.

G. Input Perturbation Analysis

We conduct an input perturbation analysis to evalu-
ate the robustness of our proposed modules against input
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TABLE VI

RESULTS ON 2D INPUT DATASET. DICE AND PRECISION SCORES (%) ARE REPORTED. 1 DONATES DICE INCREASE LESS THAN 1%, ff DONATES DICE
INCREASE MORE THAN 1%

Synapse ISIC2018
Method DICE 1T | SA-LSTM added | LSTM-SA added | Method DICE | SA-LSTM added | LSTM-SA added
TransUNet [60] 77.48 78.72 4y 7877 ¢ UNet [32] 87.41 | 89.57 f 88.17 1
MT-UNet [58] 77.87 79.35 78.40 1 DWUNet [61] 87.47 | 88.75 1 88.37 1
MISSFormer [65] | 80.32 80.92 1 80.91 1 ResUNet [62] 8791 | 88.61 1 89.22 9
DAEFormer [76] 81.87 81.98 1 82.47 1 UNet++ [64] 88.32 | 89.85 9 89.98
MERIT [56] 84.22 85.13 1 84.50 1 DCSAU-Net [57] | 90.41 | 91.17 1 91.08 1

TABLE VII

RESULTS ON 3D INPUT DATASET. DICE SCORES (%) ARE REPORTED. 1 DONATES DICE INCREASE LESS THAN 1%, {} DONATES DICE INCREASE
MORE THAN 1%

ACDC CVC-ClinicDB
Method DICE 1T | SA-LSTM added | LSTM-SA added | Method DICE | SA-LSTM added | LSTM-SA added
MISSFormer [65] | 87.85 90.25 ¢ 88.94 FCBFormer [70] 92.53 | 9298 1 92.81 1
TransUNet [60] 89.71 91.93 91.86 f SSFormer-L [71] 92.68 | 93.41 1 92.95 1
DAEFormer [76] 90.34 91.33 1 90.96 1 HarDNet-DFUS [72] | 93.32 | 93.73 1 94.58
MT-UNet [58] 90.43 93.06 1 93.08 1 FANet [73] 93.55 | 95.73 q» 95.54 1
MERIT [56] 92.32 92.82 1 92.74 1 ESFPNet [59] 9490 | 96.03 f 96.35
TABLE VIII

STATISTICAL SIGNIFICANCE TESTING RESULTS FOR DIFFERENT
DATASETS WITH T-STATISTICS, P-VALUES, AND SIGNIFICANCE.
A P-VALUE LESS THAN 0.05 INDICATES A STATISTICALLY
SIGNIFICANT IMPROVEMENT

Dataset Method t-statistic | p-value | Significant
Synapse SA-LSTM 3.6025 0.0227 Yes
ISIC2018 SA-LSTM 4.7868 0.0087 Yes
ACDC SA-LSTM 4.1444 0.0143 Yes
CVC-ClinicDB | SA-LSTM 3.0024 0.0398 Yes
Synapse LSTM-SA 3.9091 0.0174 Yes
ISIC2018 LSTM-SA 5.7060 0.0047 Yes
ACDC LSTM-SA 3.1843 0.0334 Yes
CVC-ClinicDB | LSTM-SA 3.1037 0.0361 Yes

variations using ACDC and CVC-ClinicDB dataset. The anal-
ysis involves introducing different level noise to the input
images and assessing the model’s performance under these
perturbed conditions. As shown in Fig. 8, we introduce three
levels of noise to the input images: 0.1, 0.2, and strong. The
first two noise are added to the input images by applying gaus-
sian noise with a standard deviation of 0.1, 0.2, respectively.
The strong noise is added by applying a random color jitter
transformation to the input images.

Table IX presents the input perturbation analysis results,
showing that our modules are more robust against input per-
turbations. For example, when the input images are perturbed
with a noise level of 0.2, our model achieves a DICE score of
84.16% and 86.41%, while the baseline models only achieve
accuracies of 81.02%. Such results demonstrates that our
model retains higher accuracy under noisy conditions with less
performance degradation than baseline models. We attribute
this to the benefits of using LSTM to introduce historical
information into SA, which updates the rules for handling
context dependencies. This combination allows the model to
better utilize historical information to handle input variations,
thereby enhancing the model’s robustness.

(a) image  (b) weakly perturbed (c) moderately perturbed (d) strongly perturbed

Fig. 8. The sample images of input perturbation analysis. (a) Original image.
(b) Image with noise level 0.1 (weakly perturbed). (c) Image with noise
level 0.2 (moderately perturbed). (d) Image with strong noise level (strongly
perturbed).

H. Convergence Results and Attention Visualization

Fig. 9 provides a comparison of the convergence behavior of
two baselines that utilize the same method to calculate the loss.
The loss function is a combination of the cross-entropy (CE)
loss and the DICE loss, calculated as Loss = 0.5-Lossprce+
0.5 - Lossck.

The results from Fig. 9 suggest that the addition of our
proposed modules appears to support the model’s ability to
converge faster during training. The observed improvement in
convergence may be related to the ability of our proposed
modules to more effectively represent global dependencies.
By capturing global contextual information, the model can
potentially learn more meaningful features in the early stages
of training, which might facilitate faster convergence.

Fig. 10 illustrates the attention maps generated by our pro-
posed modules using different linear combination strategies.
We get the attention map by indexing the layers using natural
numbers. The activation maps at a given index is a function
of the form f : RHXWx3 _ RH'XWxC  After getting
the activations in the shape (H’, W’, C), we represent what
parts of the image is the activation paying attention to the
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TABLE IX

INPUT PERTURBATION ANALYSIS ON ACDC AND CVC-CLINICDB
DATASET. DICE SCORES (%) AND HD95 ARE REPORTED. MINIMAL
DEGRADATION IS BOLDED. SUB-MINOR DEGRADATION IS UNDER-

LINED
Method Noise level | DICE 1 delta HD95 | delta
MT-UNet [58] | 0.1 86.21 (-4.22) 3.04 (+0.81)
SA-LSTM 0.1 89.27 (-3.79) 1.27 (+0.22)
LSTM-SA 0.1 89.13 (-3.95) 1.79 (+0.76)
MT-UNet [58] | 0.2 81.02 (-9.41) 4.55 (+2.22)
SA-LSTM 0.2 84.16 (-8.90) 1.85 (+0.80)
LSTM-SA 0.2 86.41 (-6.67) 1.99 (+0.96)
MT-UNet [58] | strong 12.54 (-77.89) | 29.45 (+27.22)
SA-LSTM strong 17.59 (-75.47) | 25.46 (+24.41)
LSTM-SA strong 19.22 (-73.86) | 25.11 (+24.08)
ESFPNet [59] 0.1 94.35 (-0.55) 1.42 (+0.21)
SA-LSTM 0.1 95.95 (-0.08) 0.49 (+0.01)
LSTM-SA 0.1 96.15 (-0.20) 0.45 (+0.04)
ESFPNet [59] 0.2 93.04 (-1.86) 1.53 (+0.32)
SA-LSTM 0.2 95.67 (-0.36) 0.55 (+0.07)
LSTM-SA 0.2 96.13 (-0.22) 0.53 (+0.12)
ESFPNet [59] strong 92.65 (-2.25) 2.38 (+1.17)
SA-LSTM strong 95.02 (-1.01) 1.37 (+0.89)
LSTM-SA strong 95.07 (-1.28) 1.39 (+0.98)

Loss on ACDC with different modules (Baseline: MT-UNet) Loss on ACDC with different modules (Baseline: MERIT)
0

—— MT-UNet
—— SALSTM
— LSTM-SA

— MERIT
55 — SALSTM
— LSTM-SA

100 10! 102 100 10! 102
Epoch Epoch

(a) MT-UNet (b) MERIT

Fig. 9. The convergence of different baselines on ACDC dataset. (a) Using
MT-UNet as baseline. (b) Using MERIT as baseline.

most by converting the shape of the activations to the form
! ! ! ! . . .
g : REXWXC o RHXW Eormally, given an activation A

we define A; = A[:,:,i] which represents an index across
the channel dimension, we evaluate the attention map as
g(A) =X, 1Al [771.

The attention maps provide insights into the model’s
decision-making process and illustrate the regions of the input
image that are most relevant for segmentation. The attention
maps generated by SA-LSTM and LSTM-SA demonstrate a
more focused and precise attention distribution compared to
the baseline attention map. This improvement in attention
distribution could be contributed to the model’s enhanced
ability by capturing the global dependencies and leveraging
the contextual information. Moreover, the attention maps gen-
erated using the linear combination strategy in SA-LSTM and
LSTM-SA reveal a slightly more refined and detailed attention
distribution, which suggests the potential effectiveness of this
strategy in enhancing the model’s attention mechanism.

L. Validation of LSTM State Combinations for Self-Attention
Mechanism

In Section III, we subjectively analyse the logic of combin-
ing LSTM states and QKV matrices through their meanings.
To substantiate the effectiveness of our proposed LSTM state

6109

(a) image (e) LSTM-SA
linear combination linear combination

(d) SA-LSTM _

non-linear combination non-linear combination

(b) baseline (f) LSTM-SA

Fig. 10. Comparison of the attention map using different linear combina-
tion strategies on CVC-ClinicDB dataset. (a) Original image. (b) Baseline
attention map. (c) Attention map using linear combination strategy in
SA-LSTM. (d) Attention map using non-linear combination strategy in
SA-LSTM. (e) Attention map using linear combination strategy in LSTM-SA.
(f) Attention map using non-linear combination strategy in LSTM-SA. Linear
combination and non-linear combination refer to the combination strategies
in Eq. 4.

combinations for the Self-Attention mechanism, we conduct a
series of experiments to validate the following conclusions:

« The combination of f state and c state effectively inte-
grates past and present information.

o The combination of f state and ¢ state as @ matrix
enhances sparse coding; similarly, the combination of g
and h as K matrix enhances sparse coding.

o The combination of f state and c state predominantly
contains shallow features, whereas the combination of g
and & predominantly contains deep features.

o The combination of (f, ¢), (g, k), and h performs better
than the combination of &, A, and h.

To validate these conclusions, we use the ACDC dataset
and adopt various methods such as t-SNE [78] visualization,
sparsity analysis using L norm, and performance comparison
on the DICE metric.

1) Validation of f and ¢ Combination for Integrating Past
and Present Information: To validate the effectiveness of the
f state and c state combination in integrating past and present
information, we perform a detailed analysis using the ACDC
dataset. Specifically, we visualize the feature distributions of
the LSTM states f and c, along with the feature extracted from
original data, using t-SNE. This visualization is conducted
on adjacent slices to observe how f and ¢ capture temporal
information from the previous and current slices.

As shown in Fig. 11, by comparing the feature distributions
of previous and current slices, we observe two key findings.
First, the feature distribution of ¢ state is more aligned with
the current slice’s original data distribution, indicating that ¢
state primarily focuses on present information. Second, the
feature distribution of f contains significant information from
the previous slice, demonstrating that f effectively inherits
past information.

These observations support our hypothesis that the combi-
nation of f and c can effectively integrate past and present
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f state (previous slice)

f'state (current slice) &%,

? past inforr

\_present information
input data (current slice) % .

\ present information

¢ state (current slicﬁ
LX

¢ state (previous slice)

(a) (b)
Fig. 11. t-SNE visualization of LSTM states on ACDC dataset. (a) f state,
input data, and c state for previous slice from top to bottom. (b) f state, input
data, and ¢ state for current slice from top to bottom. Orange arrow indicates
the past information flow, while green arrows indicate the present information
flow.

0.8
Our method 0.7 4 Our method
Traditional method Traditional method
0.7 4
0.6
0.6 - — B
T 0.5_-
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& 0.4 &
[= c
3 3
= = 0.3
0.3 - N
0.2 021
0.1 - 0.1
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f c f & c comb. g h g & h comb.
(a (b)
Fig. 12. Comparison of our method and conventional method based on

sparsity analysis on ACDC dataset. (a) Sparsity analysis of &, f, ¢, and f&c
states combination for Q matrix. (b) Sparsity analysis of /4, g, and g&h states
combination for K matrix. Red arrows indicate the enhancements.

information, making it suitable for generating the Q matrix
in the SA mechanism. By averaging f and ¢ and combining
them, we obtain a feature representation that captures both the
temporal context (past) and the current state (present), thus
enhancing the model’s ability to make informed predictions
based on a comprehensive understanding of the data.

2) Validation of Enhanced Sparse Coding Ability in Q and
K Matrices Through (f, c¢) and (g h) Combinations: We

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 33, 2024

conducte a comparative sparsity analysis using the L norm.
This analysis is performed on the ACDC dataset, where we
compare the sparsity levels of individual states (f, c, g, h)
and their combinations against a standard attention mechanism
using s state for Q matrix, K matrix, and V matrix.

As illustrated in Fig. 12, we generate bar charts to compare
the average sparsity of &, f, ¢, and f&c combination for Q
matrix, and /&, g, and g&h combination for K matrix, under
the same input conditions. The results show that the L norm
sparsity of f&c combination is significantly lower than that
of f state, and c state individually, indicating that the com-
bination of f and ¢ for Q enhances the ability of the model
to focus on more relevant features while reducing redundancy.
Similarly, the L norm sparsity of g&h combination is lower
than that of g state and # state, confirming that the combination
of g and h for K matrix enhance the ability of the model to
do sparse coding.

These results validate our hypothesis that combining f state
and c¢ state for Q matrix and g state and & state for K
matrix leads to better sparse coding and more efficient feature
representation in the SA mechanism, contributing to improved
performance in medical image segmentation tasks.

Additionally, the bar charts in Fig. 12 include a comparison
between our method and conventional methods that combine
LSTM and SA. The results show that our approach achieves
approximately a 20% improvement in sparsity over conven-
tional methods for Q matrix and a 15% improvement for K
matrix, which further demonstrates the effectiveness of our
proposed method.

3) Validation of Shallow and Deep Features in (f, c¢) and
(g, h) Combinations: To validate that the combination of
f and ¢ predominantly contains shallow features, while the
combination of g and & predominantly contains deep features,
we conduct a comprehensive analysis involving t-SNE visual-
ization and gradient distribution comparison.

We utilize t-SNE to visualize the feature distributions of f,
¢, f&c states combination, g, &, and g&h states combination
in a lower-dimensional space. This allows us to observe how
these features are distributed and to determine whether they
capture shallow or deep characteristics. The results, as shown
in Fig. 13, indicate that the feature distributions of f state
and ¢ state are more dispersed and can clearly differentiate
between different categories of data. This dispersion suggests
that f state and c state are capturing more localized, detail-
oriented shallow features. In contrast, the feature distributions
of g state and h state are more concentrated, indicating
that these states capture more abstract, global deep features.
Moreover, the combinations f&c states combination and g&h
states combination show intermediate characteristics. The f&c
states combination retains the ability to differentiate between
categories while becoming more structured, indicating a mix of
shallow features with some higher-level abstraction. Similarly,
g&h states combination shows a more refined distribution,
integrating deeper features.

To further analyze the depth of features, we visualize
the gradient distributions for fé&c states combination and
g&h states combination. Gradient distribution helps in
understanding how sensitive these features are to input
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(d) (e)

t-SNE visualization and gradient distribution comparison of LSTM states on ACDC dataset. (a)-(f) t-SNE visualization of f, ¢, f&c states
combination, g, h, and g&h states combination. (g)-(h) Gradient distribution comparison of f&c combination and g&h combination. Grey arrows indicate
the composition of the states for Q, K, and V matrices.

Fig. 13.

variations, thereby indicating whether they capture shallow or
deep information [79]. The results, also depicted in Fig. 13,
suggest that gradients of f&c states combination are larger
and more dispersed, reflecting higher sensitivity to input
changes, which is characteristic of shallow features. While
gradients of g&h states combination are smaller and more
concentrated, indicating less sensitivity to input changes,
a hallmark of deep features.

Through this detailed feature analysis, we can summarize
the following points. The t-SNE visualization shows that the
features from f state and ¢ state are closer to the input
data, capturing fine, local details. These features are dispersed,
allowing clear differentiation between categories. The gradient
distribution further supports this by showing higher sensitivity
to input changes. The features from g state and & state
capture more abstract, high-level information. Their t-SNE
visualization shows a more compact distribution, indicating
a comprehensive representation of the data’s overall structure.
The gradient distribution confirms this by showing lower sensi-
tivity to input changes. The f&c states combination integrates
both past and present information, creating a more structured
shallow feature set, and the g&h states combination refines
deep features, making them more representative of the global
structure. Both combinations demonstrate intermediate char-
acteristics that balance shallow and deep features effectively.
These findings validate our hypothesis that f state and c state
primarily contain shallow features, while g state and & state
contain deep features. By combining these states, we achieve
a balanced representation that captures both local details and
global abstractions, enhancing the model’s performance in
medical image segmentation tasks. This comprehensive anal-
ysis highlights the effectiveness of our approach in leveraging
the unique strengths of different LSTM states to improve
feature representation and model accuracy.

4) Comparison of (f, c), (g, h), and h Combinations for Q,
K, and V Matrices: To validate that the combination of f, c,
g, and h for Q, K, and V matrices performs better than using
h alone, we compare the sparsity and DICE metric results on
the ACDC dataset.

0
(f) -1.0 -0.5 0.0 0.5 1.0

(h)

Using the L norm, we compare the sparsity of the (f, ¢),
(g, h), and h combinations. The results, depicted in Fig. 12,
show that the f&c combination for Q matrix significantly
improve model’s sparse coding ability compared to & alone.
On the other hand, the g&h combination for K matrix
also demonstrates lower sparsity than /# alone. Meanwhile,
we evaluate the DICE metric for both methods. The results
in Fig. 13 (rightmost part) indicate that our method, using ( f,
¢), (g, h), and h combination, outperforms the conventional
method using & alone in both sparsity and DICE metric. These
results validate that the combination of (f, ¢), (g, h), and
h for O, K, and V matrices enhances feature sparsity and
model performance, resulting in better segmentation accuracy
compared to using / alone.

V. CONCLUSION

We introduce a novel approach to medical image segmen-
tation by rethinking the interplay between LSTM and SA
mechanism through the view of sparse coding, and propose
a novel methodology that harnesses the intrinsic capabilities
of LSTM for state compression and historical data reten-
tion, integrating these aspects with SA’s ability in capturing
global dependencies. Our innovative modules, SA-LSTM and
LSTM-SA, are meticulously designed to leverage the unique
strengths of both LSTM and SA, providing a synergistic
framework that enhances the segmentation process for 2D
and 3D medical images, respectively. Experimental validations
across multiple datasets demonstrate the superior performance
of our approach, setting new benchmarks in medical image
segmentation.

We emphasize that the combination of contextual mod-
ules is not restricted to the two proposed modules. Indeed,
there are various ways to combine them, including leveraging
other well-known modules such as multi-head SA and GRU.
Moreover, while we focus on medical image segmentation
tasks in this paper, we believe that our proposed modules can
also be applied to other tasks, such as image classification
and object detection. Looking forward, our future work will
not only explore more sophisticated combinations of these
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contextual modules but also investigate how these methods can
be effectively compared and fused with foundation models at
a finer granularity.
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